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Laboratory 1:

Project 1.1:

Basic Discrete- lime Signals

Basic Signals and Systems

For this project, vou will write Martas fuuctions (o create some basic sequences, and use these

functions to obtain plots of varous discreteime signals, As an example, suppose vou are asked to

write a MaTLAB Tunction that creates the unif-sample sequenee (also referred 1o as the disorete-time

frapelae )

e following Mareas commands would evaluate and plot the discrete-time sequence b[n

the interval <10 < n < 10:

>>
>2>
>2>
>>
>>
>>

n=-10:1:10;
stem{n, Usamp{n-5));
axis([-10 10 ¢ 2.0])
xlabel(’n’);
ylabel(’amplitude’);

title(’Time-delayed delta functicn’);

begin Marias m-file

M.,-{

A MATLAB Tonetion (o ervate this sequence is:

n++ 4

n=0 "

%
%
A
A
A
%

create the seguence indices
plot the function

adjust the axes

label the x-axis

label the y-axis

provide a title

Tms-calayed delts funcsen
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Lrowise LA 1 The Unif Sample Sequere

Obtain plots | osing your Usamp aud the stem function ) of the followine sequences over the intervals
indicated,

Loxn, =158 +3l, -5<n<h

2 x|n, = 25800 + 21 — O58n - 10, ~30 < <30

Ereocise 1020 The Unit Step Seqguese

Write a Marvas function to generate the anit-step sequence;

vinle L, n2>0
TN o u<O

A call to this function should be of the form:
>> u = Ustep(n);

where n s a vector of indices over which the function is to be evaluated, Use this luncetion to obtain
plots (using the stem function) of the following sequences over the intervals indicated.

Lowln, =35un -3, <10 <n <10

2 oxefnl=wun+ 1 ~uln 1. -20< 0 <20

Lreresse L00: The Discvete-1ime Beel Fonction

Write a MaTeag function that will generate the following diserete-time rectangular pulse:

st il l. =N<n<N
recty|n) = 0. til A

A call 1o this function should be of the form:

>> r = Rect(n, N);

where nois a vector of indices over which the function is to be evaluated, and N defines its wadth, Use
this function to obtain plots (usiog the stem lunction) of the ollowing sequences aver Lhe intervals
indicated.

Loz|n) = arectyn - 3, —10<u <10

2. 2n] = rectyy|n] —rectgfn), ~20< 0 <20



Lrereise L4 fr The Discrete-Time Sinusoid
Write a MArLAB function that will generate the following discrete-time sequence:
wln] = sin (wn + ).
A Marras call 1o this funetion should be of the form:
>> x = Dtein(n, cmega, phi);

where nois a vector of indices over which the function should be evaluated. and omega and phi
specify the radian frequency and phase, respectively, of the sinusoid, Use this fanetion to obtain
plors (using the stem function) ol the lollowing sequences over the intervals indicated:

I x|n] =sin(zn), 0<n <60
2, xln) =dsin(Hn+ Fh 10 <n <30
3 x|n| = ('os(ﬂxz‘lﬁu). 0 < n <30

Determine whether or not vach sequence is periodic and. il so. determine its period. Do your plots
agree with this?

Laereise 1oL 5 The biisercte-Time Compler Lrponential
Write a Mareas function that will geserate the following discrete-time sequence,
wn] =¢*r,
A Mareas call to this function should be of the form:
»> w = Cexp(n, cmega);

where nis a vector of indices over which the sequence should be evaluated and omega is the radian
frequency. Use this function to create the complex-valued sequence

win) = 3.26FF) 10 < n < 20.

. Using the MATLAB commands real and imag, obtain plots of the real and imaginary part of
this sequence, Use subplot to obtain both plots in the same ligure,

2. Using the MareAs commands abs and angle, obtain plots of the magnitude and phase of
this sequence, Use subplot to obtain both plots in the same ligure.

A Lor both cases, derive analytic expressions for e sequences vou have plotted and compare
these expressions with your plots.



Project 1.2, Discrete-Time Systems

lor this project vou will write MAaTLAB lunctions to emulate some hasic discreto-time svstens,
and vou will use these funetions to translorm imnputl sequences to ontpul sequences. As an exatple,
suppose you are asked to write a MATLAB funetion that emulates the sdeal deluy system;

A Mareas function for this system might be

begin MarLas m-file

function [y, nyl = Delay(x, nx, n0)
# Delay(x, nx, n0): function to emulate the ideal delay system

yA for a delay of n0

h

N = max{size(nx)); 4 determine the size of nx
if n0 >= 0 # check for positive delay

ny = [nx(1:N-1) nx(N):nx{N)+n0]; % augment the indeces vector for pos. delay
elseif n0 < Q

ny = [nx(1)+n0:nx{(1) nx(2:N)];  augment the indeces vector for neg. delay
end;
M = max(size(ny)); /i determine the size of ny
y = zeros(size(ny)); % undefined values of x will be set to O
if n0 > 0
yno+1:M) = x;
else
y(1:M+n0) = x;
end

end Marrar m-file

| e parametlers ;»;n,\lw! to Lhe Tund 'it-' are lhe | pul sequence x, Lhe i!l‘.ll'l"\ Over w ?‘.ic hitis et
nx. aud the pumber of samples by whicli it is to be delayved r0. The lunction returns the delayed
sequence y with any values for which the input sequence is undefined sot 1o zero, along with the
indices over which it is defined oy, We can then use this function (and functions written in Project

l.|l 'vtlhfui!- ots of an ir- ML soquenes

delaved by 3 saniples:

> nx = -30:30;

>> x = S5sRect(nx, 10) .# Dtsin(nx, pi/12, 0);
>> [y, ny] = Delay(x, nx, 5);

>> subplez(2,1,1);

>> stem(nx,x);

.. continuando



»> xlabel('n’);

>> ylabel(Pamplitude’);

>» title('Discrete-time sinuscid?);

>> subplot(2,1,2);

»» gtem(ny,v);

»» axis([-30 30 -5 &5]); % set the axis the same for both plots
>> xlabel('n’);

»>» ylabel(’amplitude?);

»» title(’Discrete-time sinuscid, delayed by 5 samples’);

Diiscrete—Sme sinusoid
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Loervise 12000 First-order Moving Average System
Write a Marrtas function to emulate the fiesi-order moving avenge system
yln] = apeln] + ayefn — 1].
Aeall to this Tunction should be of the form
»> [y, ny] = Mavel(x, nx, a0, al);

where nx is the vector of indices for which the fnput sequence xis defined, and ny is the vector of

indices Tor which the autput sequence y is defined, Assmme that any undelined values ol x are zero,
Use this fonetion {and Tunetions written in Project 11 to obtain plots of an input sequence
. o af
won| = drectw nlsin | —un . 30 < w < 30,
: : w2

and its corresponding oot put sequence for:
loag =1 and a; = |

2 ap = = 12



Laboratory 2: Discrete-Time Convolution
In this laboratory assignment, vou will study the concepts of discrete-time convolution, Recall
that the diserete-time convolution of the sequences o n| and fijn] is defined as

-

ylnl = S wlklhln k], oo <n < ool

=
I the sequences are nonzero only over finite intervals, that is
ekl =0, k< iy or k>N,

and
] =0, n< Ny oor n=N,

then the convolution snm can be written as

Hs
yln] = Z wlklbln k], N+ A1 <0< Nodt Wy,
k=K
and the sequence yon| will be nonzero only over an interval of Ny Ny Ky Ay F 1 samples,

The Marvcap fouction conv can be used to convolve two sequences; however, von must do all
of the bookkeeping for the indices over whiclh wlw|. Blel. and yw] are defined. To learn more
about the cenv Tnnetion. explore the conv sub-category within the datafun category of the an-line
docnmentation {nsing the dec command |,

Write a MarLap Touction to convolve two sequences (using the conv fnoetion) aud keep track
al the tndices aver which the Tonetions are defined, A call 1o vour Tunetion shoold be of the Torm

>> [y, nyl = Convelve(x, nx, h, nh);

where x and hoare the sequences to be convolved, nx and nh are the indices over which they are

defined., v is the convolved sequence, and oy i a vector of indices over which it i delined,
Example 1 Suppose vou are asked to convolve the sequences
[w 0<u<s _ _
el = L0 < <,
and

Blu] = (0.7 uln). 0 <0 <20,

Your Convelve could be nzed with Tnnetions from previons labs as Tollows:

*> nx = -10:10; % make the indices for x
>> x = nx .* (Ustep(nx) - Ustep(nx-€6)); ¥ make x

»>» nh = 0:20; Y make the indices for h
>> h = [0.7)."nh .# Ustep(nh}; Y make h

»>> [y, ny]l = Convelve(x, nx, h, nh); % convolve

>» stem(ny, y); % plot

»» xlabel('n’);
>> ylabel(’amplitude’);
»>> title(’Convelved sequence for Example 17);



Corvolved seguence for Example 1
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l'se vour Coenvelve Tuuction to convolve the Tollowing sequences;
wln] =uln] — wln - 6], 10 < < 10,

and

] =04 n]. 0 << 10,

UVse stem to plot e el fn), and the result, Derive an analytic expression for the resolt and compare
this with vour wnnerical result,

Frereise 2.1.2:

Use vour Convelve Tnuetion to convolve the Tollowing sequences;

1 n=1 -

"I - l l]-ln': w0 L1
1

= —l--'illt'[ i O = g =2 1000, {2

and

Lin) =wmn], 100 < o< 100

iYou will probably want to use the Mareag Tunetion sine to create @ nl ) Plot en] and the
convolved sequence. call it yn|. over the nterval 100 < w < 100, Use the axis command 1o
ensure that the limits on the x-axis are the same for the plots of both o el and ye]. Do vou find

e resuli surpristng? Comnnent an s,



Paercise 2,040 First-order Moving Average Systerm
In Laboratory 1. von considered a svstem with the Tollowing inpuot-out put relationship:
yln] = aguln] + ayen — 1].
Derive the impualse respouse Tor this svstenn, Consider the inpnt
2[n] = Srectaoln] sin (=n ). 30 <n <30,
w12
and nse vour Convelve Tunetion to compute the output sequence Tor
l.ap=1and a; = 1

2, iy — ] — IF_J

Conpare these resulis with thase abtained using the Bavel Tunction vou wrote Tor Laboratory 1,

Freveise 2004 Cuscade Conpection of L1 Systems

Consider two LTT svstems with the inpulse responses:

Byl = (080"

and
Jl!:_.'.'l = t‘._.-.'l [].:\lt‘._.'.' II.

1. Use vour Cenvelve Tnnetion to compute the ontpot of svstem 1 when its inpot s
wn] = rectsing,

When ereating the inpnt and impolse-response sequences, use vour jndgment as o the ap-
propriate indices over which the sequences should be defined, {"That is, vou need 1o define nx

anid nhi.

2. Use vonr Cenvolve Tnnction to compote the antpot ol svstem 2 when its inpot is the autpot

ol svstem Twith the inpot deseribed above,

3. Use vour Convelve Tnnction to compute the overall impulse response Tor the caseade connee-
tion of systems 1 and 20 s this result consistent with vour previoos resolts?  Comment on

this resalt, and on the relationship between svstems 1 and 2,



Laboratory 3: The Continuous-Time Fourier Transform

Introduction The purpose of this exercige is to illustrate numerically the concept .
Tourier transform of continuous-time aperiodic signals. In addition, this exercise :
to illustrate the computational guestions arising in the numerical calculation of T
transtforms.

Let f(1) be a real-valued function defined for —oe < t < oo, satistying conditic
existence of Fourier transformn [ such as abzolute integrability, a finite number of ma
minima and discountinuities in any finite interval). We recall that

Ffew) = / = fit)e ~iutdy
ig the definition. of direct Tourier transtorm of () where —oc < i < oe.
We will nowe try to compute numerically I'{u ) for a few examplen of f(1).
Tor real-valued even function f(t), the formulla for i+ takes the form

o) = fx' Fi1) costiot)dt

In order tor (i) to exist, f(1) must decay to 0 a8 t — oc or ¥ — —e¢. Therefor
computation of I'{is) can be approximated by

I} = _ﬂ Flteos(at)dl
where g iz larpge enough so that the contribution of the neglected parts of the integrs
/ ¥ HtJeosqut)dt  and /_ ~ flieostwilde
ig small compated to the principal part given by formula (2).

This will, for instance, be the case of functions which are zewo for |i| > a, suct
pulze, or a finite sequence of pullzes.

Fxample Congider a standard unit pulse of width 2a, centered at . The Tourier trans-
form of the pulze function iz

I(w)

/ T Pt

—




F®

Tigure 1: Pulse function

Now, suppose we do not know the analytical form of I(«2) and we want to compute a
numerical approximation to I'(w)

F) = j_il’,(t)e‘f“"dt

j = Pu(t)eos(wt)dt

/ th)mtwt)dr (3)

where we choose b such that F,(t) = 0, ¢t > b. Hence, b > a. Numerical computation of
eq. (J) can be done, for each fixed w, by one of the numerical integration routines. The
gimplest one, but not very accurate, is the Fuler formula.

We divide the interval [—d, 8] into /V subintervals of length h = 25 /N . Then

3 N-—
/ Pyft)cos(wi)dt = h Y Pul—b+ nh)eos[w(—b + nh)]
-3 w=l
Leta=1. 8=05 N = 500. Then h = 0.02.
We now compute this result using Matlab. Let us take a discrete sequence of values of
w, for example, —10 < » € 10 with a mesh 0.2 rad/sec.

Matlab seript

% computation of Tourier transform of a pulse
a=input(’pulse width a = ’});

A=input(’pulse amplitude A =’):
h=input(’stepsize h = 7);

aT=1.2%a;

T=-aT:h:aT;

om=-20:0.2:20:

%defining the pulse function

pa=zeros(1 length(T)):



for k=1:length(T)
t=(k-1)*h+T(1):

if abs(t) <= a

pa(k)=A:

end

end

%defining an auxiliary string of ones
uv=ones(length(pa),1);

Y% rapid computation of the sum
for j=1:length(om)

omt=om(]);

I't{j)=(pa.*cos{omt*T ))*uv*h;
end

plot(om.I't})

title("Tourier transform of a pulse’)
xlabel('Frequency in rad per sec’)

Probhlems:

1. Retype the Matlab script above and test run it with various values of pulse width and

amplitude. Compare the results with the exact values of the Fourier transform given
by the analytic formmula, and plot the error between the exact values and the numerical
approximation. T'or the lab report, include only two such plots, accompanied by your
summary observations on how well the numerical approximation reproduces the true
TFourier Transtorm.

2. Modify the Matlab script to enable you to compute a Tourier Transform of any time
function defined by a separate Matlab statement. For example, you can define the
pulse function outside of the program, and then call the program computing the
Fourier Transform. Since the program provided above works only for even functions
of time, you will have to add the imaginary part component (an integral involving
i sinfit)), or replace cos by exp. You then need to add a computation of the modulus
and phase (argument) of the complex Fourier Transform.

3. Compute the Tourier Transform of a unit pulse modulated by a function ecos(wygt)
and, in a separate calculation, by stnf{wgt), with g = 2, 5, 10. Compare the result
with an appropriate analytical result.

4. Compute the Tourier Transform of a sum of three different pulses of width 1, ampli-
tudes 2, 1 and -2, and centered at —e, 0, ¢ respectively, with the following values of
e 2, 4, 6. Compare the results with analytical results obtained by superposition.

In your report, put the above plots in a sub-plot format (use "help subplot™ to figure out

what to do), and print no more than three pages of the lab report. Add clear handwritten
explanations of your observations.



Laboratory 4: The Discrete-Time Fourier Transform
In this laboratory assignment, vou will investigate some of the basic properties of the discrete-time
Fourer translorm (DT T Recall that the DU analysis and syntfic<is equations are

o] = — / X (e e

27,

respectivelv, in terms of sadian frequency w, or

X{F) = Z eln]e 327E

a[n] = / T X(p)eragp

respectively, in terms of digitel Trequency L The DTFT analvsis equation is a periodic Tunetion of
wowith period 27

arof Fowith period 1 Typically, the Tundamental period is chosen to be
[or radian frequencies and | 1/2.1/2] for digital frequencies,

When nsing Mareas to compnte the DUFT, we must deal with two issnes

L. Because signals are represented in Marveap by linite-length vectors, the analysis equations
can only be computed Tor signals that are of finite doration, (Au exception will ocenr when

we can derive an analvtic expression Tor a signal’s DTFT and simply evaluate it directly,)

20 Whereas the DUFT is a Tunetion of a continnous varable, @ or &

it can ouly be evaluated
with Mareas oo a finite grid of points,

Therefore, care must be taken to select enongh
[requencies so that our plots give a simooth approximation to the actaal DTEFT,

Project 4.1:  Computing the DTFT for Finite Length Signals

Suppose a signal s known to be zero evervwhere outside of the nterval Ny <2 <0 Voo Do this
case, the D'TFT is evaluated as

i radian frequency, or
X(F) = Z 2[n] Jtrkn
n=0N,
i digital Trequency, I we wish to evaloate this sumonation Tor M oevenly spaced Trequencies over

the interval | woajor 1201720, we must evaluate the following set of equations:

X |:'r.-.: -|.-|._‘~_.:‘::| _ Z wlu]e ! TEmAL g M



or
N

: . arf L A in .
X bt ARy = 3 elafe A ES 01
a=N
where A = 2a/M and Ap = 1/ M. A good rule of thumb Tor obtaining a siooth plot of the
DUFT s o select M 4o be 5 1o 10 time larger than the signal doration N = N, Ny 4 1

The Dizerete Fouricr Tronsform (DFT] Sappose we wish to compute M oevenly-spaced Trequency

samples over the interval [0, 27 ) or [0, 1) of a sequence that is known to be zero ontside of the

wterval 0= 0w < M 1 The equations Tor computing these samples in digital frequency are
Nom| = Xlnlp)
M1
= Z ,J'_.'.'IJr ":TJ'" e
n=0
M1

= Y wfmle TR =001 M

n=i1

where Ay = 1/M. Whereas divect evaluation of these equations requires on the order of M-
Hoating-point operations (FLOPS) a compatationally-effcient algorit o, known as the Puast Fourics
Transform (FET), exists for computing these equations with only the order of M log, W FLOPS.
In starean, the FE'U is evalnated by the Tunetion ££4,

Example 1 Consider the seque e

0 otherwise

] = [ I 0<w=10
|

Phe following MavLaw commands would carpute 100 cvesdy spaced sameples of the PP (frane ()

fo U in digital frequeney) of this sequenee;

»» x = ones(1, 11);
>> & = ffti(x, 100); ¥ x is augmented with enough zercs toc make its length 100
>> m = 0:99;

»» F = mf100;

>» subplot(2,1,1);

»>» title(’Spectrum for Example 17);
»>» plot(F, abs(X));

»>> xlabel(’digital frequency’);

>> ylabel(’magnitude spectrum’};

»>» subpleot(2,1,2);

>> plet(F, angle(i));

»» xlabel(’digital frequency’);

>> ylabel(’phase spectrum’);



Spectrum for Example 1
T
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Do you wreide ratfoged I-".III!_!; thie ,'JJ'}u.n-r Jurps n'IJ_!j' ToeneT _!j'l-".ll.{f e i .'rrrr_rjn'.'r.;."!.'h'lr spectrum is zero?

To learn more abont the ££1 Tunction, explore the ££1 sub-category within the datafun categaory
ol the anline help (acceessed with the dec command ),
Suppose we wish to compote M osamples of the IYUFT over the digital frequency interval
1/2,1

this case, we can =till usze the FE'U by abserving tha

P20 Tor a sequence that is known to be zero outside of the fnterval Ny <o < Nao o

N Lbmhp) =

where /7 = 1,

0 Ny Ny+1<u<M 1

aned X ye] B the FET of #la]. Based on this analysis, the following Mareag fonetion will evaluate
M oequally spaced samples over the digital frequeney interval | 1/20 120 of the DTFT of a finite-
length sequence:



begin MarLap m-file

function (X, F] = DTFT{x, N1, M)

WDTFET: Compute the DTFT of a finite-lengtih sequence at [ equally
/ spaced digital frequencies

& x: the N-length input sequence

h i the starting locatlicn for the sequence x

A IM: the number of frequencies for evaluation over the interval
A of digital frequencies [-1/2, 1/2)

/ (M must be greater than or equal to II)

K the DTFT values
ik F: the frequencies for which the DTFT values are evaluated
/
M= fix(M);
0 = length(x);
x=x0:); % make x a columm vector
if (M < M)
error(?DTFT: # frequency samples must be greater than # data samples’);
end
n=0:0-1; n=mnl:); # make n a column vector
m= 0:M-1; m = m{:}; h make m a column vector

F=-0.5+ mfl;

tilde_x = zeros(lM,1);

tilde_x(1:0) = = .* (-1)."n;

tilde_X = fftitilde_x, M);

L= (-1)7N1 * exp(-j*2%pi*l1*m/K) .* tilde_X;

end MarLas m-file

Digital Trequencies can, of conrse, be converted to radian Trequencies according to

w = 21 F.

Freveize J00000 DTFT of a Reotargolor Pulse
Consider the rectangular pulse of duration £ samples;

PR BB BT A
ole] = l 0 otherwize

L. Show that the DTFT of @ nl is




2.

for any integer &, or, in terms ol digital Trequency,

ookl cosinT L
NiF) = sindaw F

The term sin(x b L)/ sindr £ ocenrs often in diserete-time signal processing and s referred to
as the alicscd sine Tunction or the Divickict Tunction;
sin{m L)

asine{ L) = sinf )
L Fo=Fk

for any integer ko Can vou show that the asine function can be equivalently defined as

. . sincl{ FL
asinel L) = [———7
sinel £
Write a MartLas Tonction Asinc(F,L) to evaluate the aliased sine funetion, A call to this
Tnnetion should be of the Torm

>>» X = Asinc(F,L);

where Fis a vector ol digital Trequencies over which the Touetion should be evaluated and
Lois the doration parameter, The length of the returned sequence X should be the same as
that of F. Use this Tonetion to obtain a plot of the magnitude and phase of the DT of @ n]
for £ = 10, Experiment with dilferent nnmbers of frequency samples, Plot voor final results

both as a Tunction digital and of radian Trequency,

Use the DTFT Tunction to evaluate the DUFT ol w ] for L = 10, Obtain plots of the magnitude
and phase spectrom Tor this signal, Experiment with different mnmbers of Trequeney samples,
and compare vour results with those obtained by directly evaluating the analyvtic expression

with vour Asinc Tnnetion,

3. Using vour DTFT Tunction, abtain plots af the magnitode and phase spectra for L= 1.8,10,
and 1h, By inzpecting these plots, can von determine a general role Tor the regolar spacing
of zeros in the magnitude spectrum? How about the location aud value of the peak ol the
magnitude spectrmm? How abont the location and value ol the first side-lobe o the magnitude

spectrom?

Foercise §.0.2:0 The Shifting Property

Consider the discrete-time sequenee

l otliers e
L. Use vour DTFT fuuction to obtain plots of the magnitude and phase spectrum for oa).

2. Use vour DTFT Tunction to obtain plots of the magnitude and phase spectrum for ew 1,



3. Use vour DTFT Tunction to obtain plots of the magnitude and phase spectrum Tor w2

I Commment oo the similarties and differences between the spectra Tor these three signals, Using
the theary of diserete-time signal processing, explain vour observations,

Prereize Joi.4: The Convolution Theorem
Consider the following diserete-time sequences:
won] = rectg{n o 25,

an

hiu] =

P ]
i
¢
P

) ot herwise

1. Use vour DTFT function to compute and plot the magnitode and phase for X (e~ and Hic=),
2. Use vour Convelve routine to compute and plod

ylie| = x| = hin).

3. Use vour DTFT Tunetion to compute and plot the magnitude and phase Tor ¥ (e,

Lo Compute and plot the maguitnde and phase for the prodoet X (e~ 08 (/=) How do these

9

plots compare with vour plots of the magnitode and phase Tor Y {e/= 07 Explain this,

Frercise fodo40 The Modalation Theore m

Consider the discrete-time sequence

wln| = rectygpli).

I, Use vour DTFT Tunetion to compote and plot the real-part of X{F,
2. Consider the signal
Ty
yln] = wln]cos { —n 1.
.
[Tse vour DTFT Tunetion to compute and plot the real-part of Y (),
3. Consider the signal
fam
2ln) = wln|cos | —u |
i i N .

lse vour DTFT Tunetion to compute and plot the real-part of Z( 87,
I, Compare these spectra and comment on their shmilarities and dilferences,

A b all cases, what is the imaginaryv-part of the sequence’s DTFTT Why?



Laboratory 5: Sampling of Continuous-Time Signals

In this laboratory assignment, vou will investigate some of the basic principles of the sampling

[Proeess,

Project 5.1:  Sampling a Sinuscid

Cousider the continuons-time sinnsoidal signal

ol d) = vosi 27 ful 1.

with frequeney [y in He IDwe sanple this signal at the rate fo = 1/, we will obtain the discrete-

tine signal

el o= winf,]
= vos( 27 Syl )
! |r.:1
= [N |
\

Foreach part of this project, nse asampling Trequeney ol f, = 8192 Heo Also, use Trequency-domain

sketehes in vour explanations,

I

[

For fi = 128,256,380, and 512 Ha, sample each signal over an interval of about 16 ms, and
plot the resulting sipnal, Use the subplot command 1o put vour plots o the sane lgure,

Daes the frequency ol the discrete-time signal appear to be inereasing? Fxplain,

For fy = T80, 7808, 7936, and 8064 Hez, sample the signal over an interval ol about 16 ms,
and plot the resalting signal, Use the subpleot command to put vour plots in the same ligure,
Daes the frequency al the discrete-tine signal appear to be increasing? Fxplain,

For the frequencies specified in part (1], sample cach signal over an interval of about 0,25 s,
Make a new signal by concatenating the four saompled siguals together, This new signal will
contain the fonr 0.25 « segments, Using a machine with a speaker and a D/ A converter®, use
the Martag sound command to listen to this signal, Can von hear Tour distinet tones? Are
they inereasing in frequency?

For the frequencies specified inpart (2], sample cach signal aver an interval of about 0,25 5,
Make a wew signal by concatenating the four sampled signals together, Again, usze the sound
commnand to lsten to this signal, Can vou hear Tour distinet tones? Are they increasing in

[requency? Foxplain,

For fi = 3340, 3065, 4006, 1224, and 1352 Hz, sample cach signal over an interval of about
0.25 = Make a new signal by concatenating the live sanpled siguals together, This new sigual
will contain the five 0025 5 segments, Again, nse the sound conmand to listen to this signal.

Can von hear five distinet tones? Are they fnereasing in lrequency? Fxplain,

AN terminals in the Maxwell lab except maxwelll (b & ) and maxwell? (b & c) have this capability.



Project 5.2:  Sampling a Chirp

v comtinuons-time, loear frequency-modalated (LEFM ) i s a sinusoidal signal whose Trequency
clianges linearly with tine:
al ) = vos(walt)
U'his wavelorm is of particolar importance in radar and sovar applications, As an example, a plot
al the LEM signal
ol = cos{ o L0017
over the thme interval 0,0.5] seconds is shown below
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Uhe instamtaneons frequency of this signal is Tound by taking the tine dervative of the phase

el 1)
i
i at®

ftyy =

= Z2ral,

[rom which we see that the instamtancons Trequency of the signal s of He and exhibits a linear
variation in time, For each part of this project, nse a sampling Trequeney of f, = 8192 He,
Sketeh the instantaneous frequency al this signal as a Tonetion «

i
the interval [0,2] seconds, clearly showing the starting and ending valnes
over an interval ol 2 seconds

I, Let o= 2044,

I time over
Samiple the signal

Cand nse the sound command to listen to this sienal, Does the
[requency appear to be inereasing Hoearly with time

)

20 Let o = H192,

Sketel the instantaneous Trequency o this signal as a Tonetion of e over
the interval 0,2] seconds, clearly showing the starting and ending values
over an interval of 2 seconds, and nse the sound comnnand to |
the Trequency appear ta be inereasing linearly with time
instantaneous requency and s relationship to the
that vou hear,

saniple the signal
isten to this sigual,  Does

I uot, use vour sketeh of the

sampling Trequeney 1o explain the sonud



Project 5.3:  Sampling Multiple Sinuscids
Consider the continnous-tine signal
] = cos{ 27 full o cos(27 i)
with fiy and fyin Ha, For each part of this project, nse f, = 100 Hz and f; = 200 Hz,

Lo Let the sampling frequeney be f, = 400 He, and sample the signal over the thne interval

(0,001 seconds, Plot the discrete-time sequence using the stem command.

20 Let the sanpling frequency be fo = 1600 He, and sample the signal over the time interval
(0,001 seconds, Plot the discrete-time sequence using the stem command.
3. Let the sampling frequency be foo = 300 Ha, and sample the sigual over the time interval

0,001 seconds, Use a Trequency-domain sketeh to predict what the sampled signal should
look like, Plot the diserete-time sequence and compare the plot with vour prediction. | Be
sure to notice the scale o the amplitade axis, )

Use the subpleot comnmand to put all of the plots on the same lignre,

Project 5.4:  Reconstruction From Samples
The Nyguist sampling theorem states that i1 w000 3 a bandlimited signal with
NGO =0 for 0] s 0y
or. equivalently,
NAfr=0 Tor [f] = fy.

then w. (1) is uniquely determined by its samples o n] = o dof ) Tor v = 0.1, F2, ...

provided
that the sampling period satislies

ar

(. =~ 90

LR
L this project, vou will investigate the inportance of using the proper Torm ol interpolation when
attempting to reconstroct a signal Trom its samples,

Consider the Ganssian pulse signal:

)=

The Fourder transform ol this signal is




or

X(f)=YX"e tr
it

Forthe Tollowing exercises, let a = 100,

I Use the Marean plet command to plot the magnitode spectrum for the Fourier transform
of this signal over the nterval | 150, 150] Hao Verily that the spectrom is approximately
zero Tor [ f) = 75 Heo Although this sigual is not bandlmited (its tails extend to +o0) we
can approximate it as bandlimited, Based on this infonmation, the minimum sanple spacing
required to uniquely specily this signal by its samples s approximately

*['E'[III('“—'.

150

[

Use the plet command and a sample spacing of 0.0001 s to plot w(¢) over the interval
L 1/30.1/30] 50 Because the plet command connects cach sample with a straight line, the
continuous plot represents a reconstruction of w(2) from its samples throngl lrear interpo-
lation, Notice, however, that the sanpling Trequency nsed here s approximately 70 times

larger than is required i the Nyquist theorem,

3. Usethe saanpling frequency f, = 150 Hz to sample the signal over the time nterval | 1/30.1/30]
seconds, Use the plet command to connect the sanples with straight lines, This sampling
frequency satislies the Nygoist eriterion; however, does the signal look like a Ganssian pulse

when reconstructed by linear interpolation?

I. Recall that reconstroction of a signal Trom its Nvguist samples requires that the signal be
reconstrocted with an ideal low-pass Glter, In the thne domain, this corresponds to a siee
interpolation filter;

-

Wl

.t
rpll) = Z o nlsine rf' .
\ /

= o

fa) Let £ = 17150 seconds, and vse the plot command and a sample spacing of 0.0001 s 1o
plot sine (/1) over the interval | 004, 0.04] 5. The process of sine interpolation siimply

seales and shilts this Tonetion aceording 1o and the saanple spacing, and then adds
all of the shifted Tunetions,
(byIr
wln| = e 0], w=w(l), (2], - nlN)
then the command

>» [xr, tr] = SincInterp(x, n, T);

will perform sine nterpolation Trom the samples stored in the veetor x. to create a new
vectar xrowhich contains saanples of the arginal signal sampled at a sampling rate w hich
is 20 times greater than 1/ The times at which the new sanples are taken are stored
in the veetor tr, Tvpe help SincInterp to learn more about this Tunction, For the
Nyvquist-samnpled signal obtained in Part 3. nse this Tunetion to plot the reconstructed
signal, Adinst the lhnits on the s and v-axes with the axis command so that they
are the same as Tor vonr Bonearlv-interpolated plot from Part 3. Compare the two plots,
Comment on the importance of using the appropriate interpolation when samples are

obtained at ar near the Nyvguist rate,



Laboratory 6: Spectrum Amnalysis
Spectrom analvsis often refers to the task of processing a continnons-time signal to compnte the
sipnal’s Trequency spectrong either magnitude, phase, ar both, Ino this laboratory assigimment von
will fnvestigate and explore some of the basic methods nsed Tor the frequeneyv-domain analyvsis of
signals,

Many modern fnstrmments Tor spectron analvsis ns=e digital signal processing teclhnigques, A
exaimple ol oue soch instroment = the SRT70 FFT Network Analyzer manufactured by Stanford
Research Systems', T'he basic components of a digital spectrom analyzer are shown below:

(ensure the signal is bandlimited) {continuous-to-discrefe)
s(t) | Anti-Aliasing xft) x/m] =xmI)
7| Filter CD
br
(window) (Fourier transform) l T
vin] Y(F)
() DTFT Display |—= >0

win]
The auti-aliasing lilter i= nsed to ensare that the input signal is bandlimited 1o a frequeney that is
appropriate for the sampling Trequency, Asan example, Tthe sampling frequency Tor the continuons
to diserete (O /D) converteris f, = 128 kHz, then the anti-aliasing filter should suppress Trequencies
ereater than 64 kHz. The CfD converter converts the continuous-time {C1) signal to a discrete-
time (D10 signal; the sampling rate is £ = 1/ .. The window Tunetion is needed to truncate
the DU sigual 1o an interval of length N this then allows Tor the nonmerical computation of the
signal’s spectrum nsing an algorithim such as the oue developed i our laboratory on the discrete-
time Fourier transform (DT Alter the Foorier transfornm of the windowed sigual has been
computed, the final step s the display of the spectrom with the frequency axis appropriately
labeled as specified by the sampling period 1.

Becanse
IR

the modulation or windowing property ol the DTEFT tells us that

Y (&™) = i/ X{e W= ap,

27

in radian frequency, or

Vi) = / COXOPWE

Joige
in digital frequency, where Xoand Woare the DT of o v and wlw], respectively, Becanse ol this,
the DUEFT of the window Tnonetion shonld be a funetion that is hghly coneentrated around @ =10
or o= 0. For ustanee, 30 the DUET of the window Tonetion is an inpolse train (oplving that the

window Tunetion is constant and of infinite duration)

'|1'|:._.f':|_ Z [

k=

L s . N .
Ihisis the spectram analyzer used in our commumnications laboratories.



then Y (F will simply be X (F ) However, any practical window Tonetion moust be of linite duaration
and same blurring ol the spectrom will ocenr,

Upon displaying the signal’s spectrum, the frequency axis shoold be adjusted aceording to the
[ollowing conversion rules:

o Digital frequency fo Ho [ = F/T

s Digital frequency fo Radions/Second: 12 = 2x P/T

s fudion Jrequeney fo Hzo = w/i251)

o Rudive frequency to Hodioes/Secopd: O = &/ T

Given that our DTFT algaritho (Mareas Tonetion Deft) produces sanples of the spectrom in
digital Trequency, and that most spectrum analvzers specily Trequency in Hao we will Tocus on the
conversion Trom digital Trequency to Ha

VIF ) = 5(F/ T,

or

Sifir=Yijr,

Project 6.1:  Rectangular Window

The simplest and most straight-Torward ol the window Tanctions is the Feefongulnr window

Mneticen;
| I’ I D<n< N -1
win] =5 .
. l 0 otherwise
The following Marras commands will create and plot a rectangular window with N = 10, and

will also compute and plot its magnitude spectrun:

> n = -10:30;
> N = 10;
>» w = Ustep(n) - Ustep(n-H);

>> [W,F] = Defelw, n(l), 1024);

>> subplot(2,1,1);

>>» stem(n,w);

>> xlabel(’n’)

>> ylabel(’amplitude’)

»>» title(’Rectangular window (H=10C)’)
>> subplet(2,1,2)

>>» plot(F, abs(W))

>> xlabel(’digital frequency’)

>> ylabel (’magnitude’)



FRectangutar Window (N=1l)
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It is alten convenient to make maguitade spectrnm plots on a normalized dB scale, where the peak
al the magnitonde spectron is normalized to 0 dB, The commands

»>» dBplot(F, abs(W), -50);
>» xlabel(’digital frequency’);
»>» title(’Magnitude spectrum for rectangular window (N=10)")

will accomplish this with the normalized magnitade axis clipped at 50 dB:

MBgNALITE SRECTUM for MECnguiar winoow N=10)
0 T T

a1l

PE [NUSTROON RSUOROR NOVUU RN ASSUUIUOE SOOI VSIS UV OOV SO
I I H

_‘FﬁE s 13 -12 - o 01 02 03 04 @5
agia Tequency

Netiee that the v-axis is antomatically labeled as “dB”, Tvpe help dBplet to learn more abon
this command,

The guality of a window funetion is olten specified by the width of the mainlobe and by the
height of the largest sidelobe of 115 magnitude spectrom, Often these two qualities are specified
by the Trequeney at which the normalized magnitode of the mainlobe Talls to -3d B {called the 3dB
point . and by the height (or attenuation ) of the largest sidelobe (usnally specified in nornmalized
dB ). For instance, inspection of the previous figure shows that the 10-point rectangular window
has a 3dB width of approdmately 0.06 cveles fsample. and the height of its largest sidelobe is
approximately 13 d 1B,

For the Tollowing window lengths: 16, 32, 41, and G4 compute the DTFT {using Deft) and
plot the magnitnde spectrmm on a dB scale (using dBplet). Use the subplot command 1o put the
plots in the same figure,

LooWhat is the height of the first sidelobe as a Tonetion of the window length? Can vou determine
an analyviic expression Tor determining this height for arbitrary A7



20 What is the 3dB width ol the mainlobe as a fonetion of the window length? Can von detennine

an analviic expression Tor determiving this width Tor arbitrary N7

Project 6.2:  Other Commonly Used Windows

Some al the most commonly nsed windows in signal processing and spectrmn analysis fnelude the
Fectangular, Bartlett, Haning, Hamning, and Blacknoan windows®, Fach of these windows can be
gencrated through Marras Tanetion calls aud are defined by the Tollowine equations:

e boxcar (1) (the rectangnlar window )

e bartlett(ll):

e hanning (M): )
—:| 0= e N

. ol herwise

e hamming (1):
i, atherwise

e blackman(lN):

[ 042 05e0s (2 e Uy :
win| = v ' :
I_ 0. othierwise

I Using the plot command with moltiple argmments, abtain plots of the Hectungulor, Bartletf,
Hiererivg, Horerei g, and Blockman windows Tor N = 100, all oo the same axes, Based on
these time-domain plots, does any window seem “best ™7 15 00 the rectangular window?

2, Obtain dB plots of the magnitade spectrom Tor cach of these windows, Use the axis command
or the Marean colon operator to display only the frequency interval that contains the first
few sidelobes, Comment on the differences between the mainlobe width and sidelobe height
[or cach of these windows, Which window has the most narrow mainlobe?  Which window
has the lowest sidelobes? Which window do vou think would be best for a spectrom analveer?

Wy

“The Bartlett, Hanning, Hamming., and Blackman windows are all named after their orginators. Lhe Hanning
window 15 associated with Jalivs von Hann. an Aunstrian meteorologist. and s sometimes referred to as the Hann
or von Hann window. [he term “hanning” was nsed by Blackman and Tukev ( fhe Weasarement of Power Speetiai.
19581 to describe the aperation of applving this window to a signal ( From Oppenheim and Schafer. Discreete fime

aal Processing.)



Project 6.3:  Spectrum Analysis for a Tone

Consider the continnons-time signal

o) = cos( 27 ful ),
where fy = 30 kllz. Suppose von are nsing a digital spectruom analyzer with a sampling frequency
Fo= 128 ke, Using a window size of N = 128 siunples, compute the DUFT of the sampled signal
alter it has been multiplied by the window, awd display the magnitode spectrom with the frequency
axis labeled fn He (vou must convert the digital frequencies returned by the Dt Tunction to Hx),
Using cach of the windows { Beclanguluor, Bartlett, Hanndng, Hamoning, and  Blackiean ), abiain
plots of the magnitnde spectrom Tor this signal, Be sore 1o label the Trequeney axis appropriately,
Use the axis connmand 1o “zoom-in” on the frequency interval that containg the mainlobe and
a few sidelobes of the spectrom of this signal. T vour jodement, which window gives the best

performance?

Project 6.4: Spectral Resclution for Two Tones

Consider a combination of continnous-time tones at closely spaced frequencies fy and fo + Ay

w1 = cos{ 2n fyl ) cos(2a A_,-J!'].
where fu = 30 Kz and Ay s the Trequency offset. Again, suppose vour are using a digital spectrum
analvzer with a sampling frequency fo = 128 ke, Our goal here i to determine the mininum
requency offset Ay such that onr spectrum analyzer can clearly distinguizh the two frequency
campoanents of this signal, For this praject, Toens anly on the Beetangufor and Haring windows,
Beginuing with Ay = 10 kHz and using a window size of & = 128 samples, compute the DT of
the sampled signal after it has been multiplied by the window, aud display the maguitude spectrom
with the frequeney axis labeled in He Use the axis command to localize the frequeney axis to the
reeion ol interest, Can vou clearly distiveuish the two Trequency components with both windows?
Does one window seemn to perform better than the other?  Can von sngeest modilications 1ha
would inerease the resolution of vour spectrum analyzer?

Now, decrease Ay until vou can no longer distinguish two separate frequency components, Do
this Tor both windows. Does one window have better “resolution™ than the other? That is, can one

al the windows distingnish the two tones Tor a simaller Ay than the other?



Laboratory 7: FIR Filter Design Using Window Functions
In this laboratory assignment vou will investigate and explore a method of FIR filter desien known
as Uhe window e thad, This method generally begins with the specilication of a desired Trequency
response for an LT svstems: Hale?= ) in radian Trequency, or B0 i digital Trequency, The
impulse response for this system is then obtained through the Fourer synthesis equation:

However, because the specilication of the desired svstem olten includes a piecewise constant or
piecewise Tunctional frequency response, the desired system’s impulse response is olten non-causal
and of infinite duration, As an example, suppose the desired system is an ideal low-pass filter with
a cut-oll Trequency of @ /4 i radian Trequency o 1/8 i digital Trequency, The desired fnpulse
response s e

JI‘-!'_""J -

sinf w4

= T*i nefue /.

Obviously this hmpulse response is neither cansal nor of finite doration.  To make the fnmpulse
respouse finite, we might troucate the sequence;

M <u< M

ol lierwise

This svstem, however, would not be causal, To make the svstem canszal and of fnite doration, we
conld delay the troveated fmpulse response by M osamples;

hln] = hin— M)
[ haln M) D<w<2M
B l 0. of herwise

This two-step process can be viewed as
hin] = laln — Mrectag[n — M|,

where rectyy n| is the rectangular window Touction of width 28 4 1. In general, any window
funetion win| conld be nsed to troneate the inpulse response;

hin] = hgln Mlwln - M),



Much insight can be gained by examining the windowing operation in the Trequency domain, Most
times we specily the desired Trequency response as a real-valoed syoonetric Tunetion =o that the
desired impulse respouse is also a real-valoed svinmetrie Tonetion, Then, because of 1he time-delay
property Tor the DTFT:

Bl M) o Hyle?= e =M

or

M| e Hg{ # e 2TEM

the Trequency response for the delaved system will have geperalized fincar pluse, Farthermore, if
the window fnnetion is a realvaloed svimmetrie Tunetion, then its Fourier transform (W{e/~ 1 ar

WE T will also be a real-valued syinmetric Tonetion, awd, as with the shilfted mpulse response,
ur _”I E W e e "”'”.

o

M| W E e 2

Becanse multiplication in the thne domain results in convolution in the frequeney domain, we have

gl — Mw[n —~ M] - —/' H gl e/ je I8N et 00 ot M gy

= —/ Haf e® )W 0 g ¢ M

or

RN

Hoal #" e 280 gt gy 02t M g g

a / Hal FW(E Fdp’ e 270N
Jo1 )2

and the resulting Trequency response will also have generalized luear pliase, Because the resulting
frequency response is the convolotion of the desired Trequency response with the Fourier transform
al the window Touetion (times the lnear phase term ), windows that are highly concentrated in the
frequency domain will resolt in the best approximation of the desired Trequency response,

All of the windows we have previously considered — Becdangulor, Buartlett, Haeing, g,
and Blackmeare — can be used for FIR filter design®, Tn addition to these, a more flexible and general

window is the Raiser window:

otherwise

where M = (A Lif2, faleh is the zeroth-order modilied Bessel Tunetion of the first Kind, awd 3

i a parameter that adjusts the width and shape of the window, The Marrap Tunetion call Tor an
H-length Kaiser window with parameter beta is kaiser (M, beta). The ntility of this window lies
i its ability to adjust the trade-off between mainlobe width and sidelobe height. These window
characteristics are important because they control the transition bandwidtlh and passhaud ripple

when the window method is used Tor FIR filter design,

"Recall that the Matnar definition for cach of these windows is such that they are already shifted so that they

begin at n o= (0.



Example 1 Suppose we wish to design a length-141 low-pass filter with the cutoll frequency 7 /4
iin radian Trequeney ) or 1S Gin digital Trequeney ) The following Matrag code would accomplish
this nsing the Reetargulur, Hapdeg, and Blackman windows:

> N = 41; n=0:H1-1;

»>> hd = (0.25)*sinc((n-20)/4); % the desired impulse respomnse (truncated)
>> wl = boxcar(ll); % the rectangular window
>> hl = hd(:) % wl(:);

-

>> [H1,F] = Dtft(hl,n(L),1000);

>> w2 = hanning(NN); % the hanning window

>> h2 = hd(:) .* w2(:);

>» [H2,F] = Dtft(h2,n(1),100C);

>> w2 = blackman(HN); ¥ the blackman window

>> h3 = hd(:) . # w3(:);

>> [H3,F] = Dtft(h3,n(l),1000);

>> subplot(2,1,1)

>> plot(F,abs(H1),’-",F,abs(H2),7--" ,F,abs(H3), -, "};

»>» legend(’-’,’rectangular’,’--’,’hanning’,’-.’,’blackman’);

>> xlabel(’digital frequency’);

>> ylabel({’magnitude’);

>> title(’Frequency Response for Example 1°);

>> subplot(2,1,2)

>> plot(F,dB(abs(H1),-100), - ,F,dB (abs (H2) ,-100), -~ ,F ,dB(abs (H3) ,-100),7~.");
>> xlabel(’digital frequency’);

>> ylabel(’normalized magnitude (dB)’);

Frequency Response for Example 1
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To learn more about the function dB, tyvpe help dB atl the MATLAB prompt, The inpulse response
[or cach of the filters is shown in the Tollowing lienre:



Impulse Response for Example 1
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Project 7.1:  High-Pass Filter Design

Design a leneth-6G1 linear-phase FIR high-pass filter with a band edge of 7o /8 in radian frequency
or 716 dn digital Trequency using the Kectopgulor, Baetletd, Hanping, Hamoieg and Blackoan
windows, For each window, plot the impulse response and the magnitude of the Trequency response

0

(on a dB seale ). Which filter do von Teel s “hest™

Project 7.2: Band-Pass Filter Design

Design a length-i1 linear-phase FIR band-pass filter with the passband o /4 throngh 7 /2 in radian

[requency or 1/ through 1/4 in digital frequency using the window funetion that vou classified as
“hest™ n the high-pass filter design, Plot the impolse response and the maguitude response {on a
dB seale). Repeat Tor a length-23 and a length-101 filter, Connnent on vonr resolts,

Project 7.3:  Kaiser Window

For a frequency selective lilter, let & define the maxinmm percent ripple in the passhand {percent
ripple = 100 = o). and
MAw = |w, — w,|,

define the width of the transition band, where w, is the stop-band frequeney and w, 15 the pass-band
[requency. Furthermore, let

A= 20log,, e
As determined by Kaiser, empirical Tormulas Tor the 5 and N that are needed to achieve specified
values o & and Aw are

0.r2ey - 8070, A= A0
e OARAZ2CA 2009 1 00TRSE(A 210, 21 < A < A0

(. A< 21



anl

[

A8
T ouoNRAL

Write a Martap Tunetion to evaloate N oand 3 lor specilied values of & and A, A call 1o

vaur Tunetion shoold be of the Torm
>>» [N, beta] = KalserParam(delta, delta_cmega);

where delta is the rpple parameter and deltaomega is the transition region width., 1se
this Tunction to obtain a plot of 3 versus & to get a feel Tor the typical range for 3. For vour
plot, vary & from 0.0001 to 0.1, (Hint: write vour Tunction so that delta, I and beta can be
verlors, |

Design a length-61 linear-phase FIR high-pass llter nsing the saane specilications as in Project
7.1 but nsing a Kaiser window with 3 = 2.6, and 9. Plot the hinpulse respouse and the
magnitnde response (in d B Compare these with each other and with the filters designed

with the other windows, Conment on vour resnlts,

Design a linear-phase FIR high-pass lilter using the same specilications as in Project 7.0 and

a Waiser window, bot select N oand 5 Tor 1% ripple in the passband and a transition region

ol width /10 in radians, Use vour funetion KaiserParam to determine the window width A
,

and 3. Plot the impulse response and the magnitude response (o dB ) Compare these with
the filters designed with the other windows, Cominent on yvour results,



