Beneficiamento gravimétrico

Apresentação da componente curricular

Súmula

Objetivos

Conteúdo

Critérios de avaliação

Cronograma

Bibliografia

Beneficiamento gravimétrico

SEMESTRE: 4º semestre

CARGA HORÁRIA: 04 horas/semana

PRÉ-REQUISITOS: Cominuição e classificação

PROFESSOR RESPONSÁVEL: Régis Sebben Paranhos – Substituído pelo prof. Raul Oliveira Neto no sem. Letivo 01/2014

SÚMULA:

Fundamentos teóricos da gravimetria.

Beneficiamento gravimétrico

Objetivos:

- Aprendizagem e compreensão de conceitos, relações, leis, princípios e teorias aplicadas à área do beneficiamento gravimétrico;
- Conhecer os principais equipamentos de beneficiamento gravimétrico, seus usos e aplicações;
- Resolver problemas envolvendo produção das instalações de beneficiamento gravimétrico, tendo em vista a variabilidade dos processos existentes.

Metodologia

Estratégias:

Aulas teóricas

Resolução de problemas

Realização de trabalhos (exercícios de fixação) e

seminários

Recursos:

Audiovisuais e multimídia

Quadro "verde"

Material didático

Moodle

Procedimentos e critérios

Procedimentos:

Três provas + exercícios de fixação distribuídos ao longo do semestre + seminários

Critérios:

Três provas: 75% da nota final

Exercícios + seminário realizados e entregues

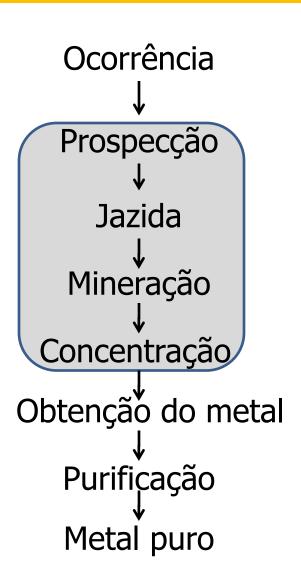
conforme cronograma: 25% da nota final

A média final para aprovação é 6 (seis). O aluno que, eventualmente, não tenha atingido a média final terá a possibilidade de realizar a recuperação da prova de menor valor.

- Semana 1: Apresentação (cronograma e objetivos). Introdução. Exercício de fixação I
- Semana 2: Caracterização para o beneficiamento gravimétrico; Exercícios de fixação II
- Semana 3: Curvas de lavabilidade Exercícios de fixação III (teoria e prática).
- Semana 4: Projeto de circuitos e seleção de equipamentos; Exercícios de fixação IV.
- Semana 5: Prova 1 (A COMBINAR). Correção da prova.
- Semana 6: Princípios de fluidodinâmica. Exercícios de fixação V.
- Semana 7: Beneficiamento em meios densos.
- Semana 8: Beneficiamento em meios densos. Exercícios de fixação VI.
- Semana 9: Teorias de jigagem. Equipamentos. Saída de campo (A COMBINAR).
- Semana 10: Teorias de jigagem. Equipamentos. Exercícios de fixação VII. Seminários.
- Semana 11: Prova 2 (A COMBINAR). Correção da prova.
- Semana 12: Mesas concentradoras. Exercícios de fixação VIII.
- Semana 13: Espirais e calhas concentradoras. Exercícios de fixação IX e X.
- Semana 14: Outros processos de concentração. Curva de Tromp.
- Semana 15: Apresentação de seminários.
- Semana 16:. Prova 3 (A COMBINAR). Correção da prova.
- Semana 17: Correção da prova. Dúvidas. Provas recuperação.
- Semana 18: Entrega dos conceitos.

Bibliografia

- Luz, Adão Benvindo da, Possa, Mario Valente e Almeida, Salvador Luiz de. *Tratamento de Minérios*. CETEM – Centro de tecnologia mineral, CNPq/MCT, 4ª Edição, 2004;
- Valadão, George Eduardo Sales e Araujo, Armando Corrêa. *Introdução ao tratamento de minérios*. Editora Ufmg, 2007;
- Wills, B.A. e Napier-Munn, T.J. Will's. *Mineral Processing Technology An Introduction to the practical aspects of ore treatment and mining recovery*. ISBN: 0750644508, Editor: Elsevier Science & Technology Books, Pub., 2006.
- · Sampaio, C.H. e Tavares, L.M.M. Beneficiamento gravimétrico. Uma introdução aos processos de concentração mineral e reciclagem de materiais por densidade. Editora UFRGS, 2005.



Brinde

O aluno que obtiver a melhor nota final receberá do professor um exemplar do livro texto:

Sampaio, C.H. e Tavares, L.M.M. *Beneficiamento gravimétrico. Uma introdução aos processos de concentração mineral e reciclagem de materiais por densidade*. Editora UFRGS, 2005

Introdução Processo completo até o metal

Definição Concentração gravimétrica

Processo pelo qual partículas de diferentes tamanhos, formas e densidades são separadas umas das outras pela força da gravidade ou pela força centrífuga.

Termo em inglês: gravity concentration

```
Sinônimos em português:
separação por densidade
gravimétrica
densitária
gravítica
```

Operações

Definições

Transformativas

Alteram as espécies minerais (pirometalurgia e hidrometalurgia)

Não transformativas

Não alteram as espécies minerais
(são operações físicas, mecânicas e
físico-químicas)

Cominuição

MINÉRIO
"ROM"

LIVRES
"mineral de valor"

MISTAS

LIVRES
"mineral de ganga"

Requisitos

O que é preciso?

Três condições são necessárias

LIBERAÇÃO

Separação em partículas livres

DIFERENCIAÇÃO

Existência de propriedade ou condição diferenciadora

SEPARABILIDADE POSSÍVEL

Existência de maneira de separar

Por quais razões beneficiar?

Justificativas

Por que beneficiar?

```
Redução de tamanho
```

Britagem e moagem

Separações

Sólido/sólido (beneficiamento gravimétrico)

Sólido/líquido (deságüe)

Líquido/líquido (hidrometalurgia)

Manejo

Transporte e armazenamento

Histórico

Gravimetria

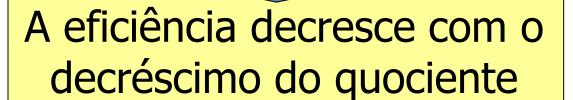
- A gravimetria "declinou" (perdeu importância), na primeira metade do século XX (1950), devido ao desenvolvimento dos processos de flotação;
- Entretanto, permaneceu importante como beneficiamento de minérios de ferro, tungstênio, estanho, carvão e muitos processos industriais.

Histórico

Renascimento

Nas últimas 3 décadas, muitas mineradoras tem reavaliado os processos gravimétricos, devido:

- Ao aumento dos custos dos reagentes de flotação e;
- À reduzida poluição ambiental gerada pelos processos gravimétricos, em comparação com outros processos de concentração.


Princípios da concentração gravimétrica Critério de concentração

Os métodos de concentração gravimétrica separam minerais de diferentes densidades, por seu movimento relativo em resposta à gravidade e outras forças, normalmente a resistência ao movimento oferecida por um fluido viscoso, como a água ou o ar.

Princípios da concentração gravimétrica Critério de concentração

$$\frac{Dh-Df}{Dl-Df}$$
\rangle2,5

Separação gravimétrica fácil!

Dh = densidade do mineral pesado

DI = densidade do mineral leve

Df = densidade do fluido

Princípios da concentração gravimétrica

Material	Mineral	Fórmula	Densidade relativa
Alumínio	Gibbsita	Al(OH)	3,0 - 3,1
Chumbo	Galena	PbS	7,4 – 7,6
Cobre	Calcopirita	CuFeS2	4,1 – 4,3
Cromo	Cromita	FeCr2O4	4,1 - 5,1
Manganês	Pirolusita	MnO2	4,5 – 5,0
Silício	Quartzo	SiO2	2,65
Ouro	Nativo	Au	15 – 19,3
Argilas	Caolinita	Al2Si2O5(OH)4	2,6 – 2,63
Carbonatos	Calcita	CaCO3	2,72
Gesso	Gipso	CaSO4.2H2O	2,3
Fosfatos	Apatita	Ca5(PO4)3.(F,Cl,OH)	3,15 – 3,2
Arenito			2,6
Folhelho			2,6
Folhelho carbonoso			2,0 - 2,6
Carvão	Vitrinita		1,3 - 1,8

Exercício de fixação Leitura e interpretação

Capítulo 1 — Introdução (Livro: Beneficiamento gravimétrico — Sampaio e Tavares)

Questão dirigida:

1. Calcule, utilizando o critério de concentração, se há possibilidade de concentração gravimétrica para separar carvão (vitrinita) e folhelho carbonoso.

Próxima aula Caracterização para gravimetria

Páginas 27 a 80 do livro texto

(Livro texto: Beneficiamento gravimétrico – Sampaio e Tavares)

Exercícios de fixação I