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Applications of Automata Theory

Linguistics

Automata theory is the basis for the theory of formal languages. A proper treatment
of formal language theory begins with some basic definitions:

A symbol is simply a character, an abstraction that is meaningless by itself.
An alphabet is a finite set of symbols.
A word is a finite string of symbols from a given alphabet.
Finally, a language is a set of words formed from a given alphabet.

The set of words that form a language is usually infinite, although it may be finite or
empty as well. Formal languages are treated like mathematical sets, so they can
undergo standard set theory operations such as union and intersection.
Additionally, operating on languages always produces a language. As sets, they are
defined and classified using techniques of automata theory.

Formal languages are normally defined in one of three ways, all of which can be
described by automata theory:

regular expressions
standard automata
a formal grammar system

Regular Expressions Example

alphabet A1 = {a, b}
alphabet A2 = {1, 2}
language L1 = the set of all words over A1 = {a, aab, ...}
language L2 = the set of all words over A2 = {2, 11221, ...}
language L3 = L1 ∪ L2

language L4 = {an | n is even} = {aa, aaaa, ...}

language L5 = {anbn | n is natural} = {ab, aabb, ...}

Languages can also be defined by any kind of automaton, like a Turing Machine. In
general, any automata or machine M operating on an alphabet A can produce a
perfectly valid language L. The system could be represented by a bounded Turing
Machine tape, for example, with each cell representing a word. After the instructions
halt, any word with value 1 (or ON) is accepted and becomes part of the generated
language. From this idea, one can defne the complexity of a language, which can be
classified as P or NP, exponential, or probabilistic, for example.

Noam Chomsky extended the automata theory idea of complexity hierarchy to a
formal language hierarchy, which led to the concept of formal grammar. A formal
grammar system is a kind of automata specifically defined for linguistic purposes.
The parameters of formal grammar are generally defined as:

a set of non-terminal symbols N
a set of terminal symbols Σ
a set of production rules P
a start symbol S

Grammar Example

start symbol = S
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non-terminals = {S} 
terminals = {a, b}
production rules: S → aSb, S → ba

S → aSb → abab
S â†’ aSb → aaSbb → aababb

L = {abab, aababb, ...}

As in purely mathematical automata, grammar automata can produce a wide variety
of complex languages from only a few symbols and a few production rules.
Chomsky's hierarchy defines four nested classes of languages, where the more
precise aclasses have stricter limitations on their grammatical production rules.

The formality of automata theory can be applied to the analysis and manipulation of
actual human language as well as the development of human-computer
interaction (HCI) and artificial intelligence (AI).
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Biology

To the casual observer, biology is an impossibly complex science. Traditionally, the
intricacy and variation found in life science has been attributed to the notion of
natural selection. Species become "intentionally" complex because it increases
their chance for survival. For example, a camoflauge-patterned toad will have a far
lower risk of being eaten by a python than a frog colored entirely in orange. This idea
makes sense, but automata theory offers a simpler and more logical explanation, one
that relies not on random, optimizing mutations but on a simple set of rules.

Basic automata theory shows that simplicity can naturally generate complexity.
Apparent randomness in a system results only from inherent complexities in the
behavior of automata, and seemingly endless variations in outcome are only the
products of different initial states. A simple mathematical example of this notion is
found in irrational numbers. The square root of nine is just 3, but the square root of
ten has no definable characteristics. One could compute the decimal digits for the
lifetime of the universe and never find any kind of recurring patter or orderly
progression; instead, the sequence of numbers seemse utterly random. Similar
results are found in simple two-dimensional cellular automaton. These structures
form gaskets and fractals that sometimes appear orderly and geometric, but can
resemble random noise without adding any states or instructions to the set of
production rules.

The most classic merging of automata theory and biology is John Conway's Game of
Life. "Life" is probably the most frequently written program in elementary computer
science. The basic structure of Life is a two-dimensional cellular automaton that is
given a start state of any number of filled cells.   Each time step, or generation,
switches cells on or off depending on the state of the cells that surround it. The rules
are defined as follows:

All eight of the cells surrounding the current one are checked to see if they are
on or not.
Any cells that are on are counted, and this count is then used to determine
what will happen to the current cell:

1. Death: if the count is less than 2 or greater than 3, the current cell is
switched off.

2. Survival: if (a) the count is exactly 2, or (b) the count is exactly 3 and
the current cell is on, the current cell is left unchanged.

3. Birth: if the current cell is off and the count is exactly 3, the current cell
is switched on.

Like any manifestation of automata theory, the Game of LIfe can be defined using
extremely simple and concise rules, but can produce incredibly complex and intricate
patterns.
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In addition to the species-level complexity illustrated by the Game of Life, complexity
within an individual organism can also be explained using automata theory. An
organism might be complex in its full form, but examining constituent parts reveals
consistency, symmetry, and patterns. Simple organisms, like maple leaves and star
fish, even suggest mathematical structure in their full form. Using ideas of automata
theory as a basis for generating the wide variety of life forms we see today, it
becomes easier to think that sets of mathematical rules might be responsible for the
complexity we notice every day.

Inter-species observations also support the notion of automata theory instead of the
specific and random optimization in natural selection. For example, there are striking
similarities in patterns between very different orgranisms:

Mollusks and pine cones grow by the Fibonacci sequence, reproducible by
math.
Leopards and snakes can have nearly identical pigmentation patterns,
reproducible by two-dimensional automata.

With these ideas in mind, it is difficult not to imagine that any biolgical attribute can
be simulated with abstract machines and reduced to a more manageable level of
simplicity.
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Other Applications

Many other branches of science also involve unbelievable levels of complexity,
impossibly large degrees of variation, and apparently random processes, so it makes
sense that automata theory can contribute to a better scientific understanding of
these areas as well. The modern-day pioneer of cellular automata applications is
Stephen Wolfram, who argues that the entire universe might eventually be
describable as a machine with finite sets of states and rules and a single initial
condition. He relates automata theory to a wide variety of scientific pursuits,
including:

Fluid Flow
Snowflake and crystal formation
Chaos theory
Cosmology
Financial analysis
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