| Compartilhar Denunciar abuso Préximo blog» Criar um blog Login

DAPATKAN DOLLAR GRATIS DI SINI

MONETIZE
YOUR WEHBSITE

TOP BANNER AD

Your Ad Here

MONDAY, APRIL 28, 2008
BLOG ARCHIVE

Computability theory

Y 2008 (20)
» August (4)

v April (16) In computer science, com putability theory is the branch ofthe

What is a Network
Introduction to Algorithms

Central Processing Unit -
CPU

MEDIA BELAJAR HTML:
Tukaran link

Belajar Memulai Bisnis
Internet Dengan Affiliate

Beberapa Strategi
Menghasilkan Uang
Melalui Intern...

Visual display unit
Keyboard

Sound card

Video card

Computer power supply
Motherboard/Logicboard
Computability theory
How computers work

Stored program
architecture

Computer

theory of computation that studies which problems are
computationally solvable using different models of computation.

Computability theory differs from the related discipline of
computational complexity theory, which deals with the question
of how efficiently a problem can be solved, rather than whether it
is solvable at all.

INTRODUCTION

A central question of computer science is to address the limits of
computing devices. One approach to addressing this question is
understanding the problems we can use computers to solve.
Modern computing devices often seem to possess infinite capacity
for calculation, and it's easy to imagine that, given enough time, we
might use computers to solve any problem. However, it is possible
to show clear limits to the ability of computers, even given
arbitrarily vast computational resources, to solve even seemingly
simple problems. Problems are formally expressed as a decision
problem which is to construct a mathematical function that for
each input returns either o or 1. If the value of the function on the

input is 0 then the answer is "no"and otherwise the answer is 'yes".

To explore this area, computer scientists invented automata
theory which addresses problems such as the following: Given a
formal language, and a string, is the string a member of that
language? This is a somewhat esoteric way of asking this question,
so an example is illuminating. We might define our language as the
set of all strings of digits which represent a prime number. To ask

ABOUT ME
SOTONK

VIEW MY COMPLETE PROFILE

FREE Web
Submission
LINKS

http://tukeranlink.wordpr
ess.com

Tukar Link dan Promosi Website
- Webkios Direktori gratis untuk
promosi dan tukar link website
indonesia dengan berbagai
macam kategori. Tambahkan
website anda sekarang!

WEBKIOS

http://www.webkios.info/

direktori
+| Google™
Sitemap URL:

http:// Submit

Choose crawler: Ask

Google Yahoo
Moreover.com (MSN)

Mypagerank.net Sitemap
Submitter Adsense $100k
Blueprint

whether an input string is a member of this language is equivalent
to asking whether the number represented by that input string is
prime. Similarly, we define a language as the set of all palindromes,
or the set of all strings consisting only of the letter 'a’. In these
examples, it is easy to see that constructing a computer to solve
one problem is easier in some cases than in others.

But in what real sense is this observation true? Can we define a
formal sense in which we can understand how hard a particular
problem is to solve on a computer? It is the goal of computability
theory of automata to answer just this question.

FORMAL MODELS OF COMPUTATION

In order to begin to answer the central question of automata
theory, it is necessary to define in a formal way what an automaton
is. There are a number of useful models of automata. Some widely
known models are:

Deterministic finite state machine
Also called a deterministic finite automaton (DFA), or
simply a finite state machine. All real computing devices in
existence today can be modeled as a finite state machine, as
all real computers operate on finite resources. Such a
machine has a set of states, and a set of state transitions
which are affected by the input stream. Certain states are
defined to be accepting states. An input stream is fed into
the machine one character at a time, and the state
transitions for the current state are compared to the input
stream, and if there is a matching transition the machine
may enter a new state. Ifat the end of the input stream the
machine is in an accepting state, then the whole input
stream is accepted.

Nondeterministic finite state machine
Similarly called a nondeterministic finite automaton (NFA),
it is another simple model of computation, although its
processing sequence is not uniquely determined. It can be
interpreted as taking multiple paths of computation
simultaneously through a finite number of states. However,
it is proved that any NFA is exactly reducible to an
equivalent DFA.

Pushdown automaton
Similar to the finite state machine, except that it has
available an execution stack, which is allowed to grow to
arbitrary size. The state transitions additionally specify
whether to add a symbol to the stack, or to remove a
symbol from the stack. It is more powerful than a DFA due
to its infinite-memory stack, although only some
information in the stackis ever freely accessible.

Turing machine
Also similar to the finite state machine, except that the
input is provided on an execution "tape", which the Turing
machine can read from, write to, or move back and forth
past its read/write "head". The tape is allowed to grow to
arbitrary size. The Turing machine is capable of performing
complex calculations which can have arbitrary duration.
This model is perhaps the most important model of
computation in computer science, as it simulates
computation in the absence of predefined resource limits.

Multi-tape Turing machine
Here, there may be more than one tape; moreover there
may be multiple heads per tape. Surprisingly, any
computation that can be performed by this sort of machine
can also be performed by an ordinary Turing machine,
although the latter may be slower or require a larger total
region of its tape.

POWER OF AUTOMATA

With these computational models in hand, we can determine what
their limits are. That is, what classes of languages can they accept?

Power of finite state machines

Computer scientists call any language that can be accepted by a
finite state machine a regular language. Because of the
restriction that the number of possible states in a finite state
machine is finite, we can see that to find a language that is not
regular, we must construct a language that would require an
infinite number of states.

An example of such a language is the set of all strings consisting of
the letters 'a'and b'which contain an equal number of the letter 'a’
and b". To see why this language cannot be correctly recognized by
a finite state machine, assume first that such a machine M exists. M
must have some number of states n. Now consider the string x
consisting of (n + 1) 'a's followed by (n + 1) b’s.

As M reads in x, there must be some state in the machine that is
repeated as it reads in the first series of 'a’s, since there are (n + 1)
'a's and only n states by the pigeonhole principle. Call this state S,
and further let d be the number of'a's that our machine read in
order to get from the first occurrence of Sto some subsequent
occurrence during the 'a'sequence. We know, then, that at that
second occurrence of S, we can add in an additional d (where d >
0) 'a's and we will be again at state S. This means that we know that
a string of (n + d + 1) 'a's must end up in the same state as the string

of (n + 1) 'a's. This implies that if our machine accepts x, it must
also accept the string of (n + d + 1) 'a's followed by (n + 1) b's,
which is not in the language of strings containing an equal number
of'a'sand b's.

We know, therefore, that this language cannot be accepted
correctly by any finite state machine, and is thus not a regular
language. A more general form of this result is called the Pumping
lemma for regular languages, which can be used to show that
broad classes oflanguages cannot be recognized by a finite state

machine.
Power of pushdown automata

Computer scientists define a language that can be accepted by a
pushdown automaton as a Context-free language, which can be
specified as a Context-free grammar. The language consisting
of strings with equal numbers of'a's and 'b's, which we showed was
not a regular language, can be decided by a push-down automaton.
Also, in general, a push-down automaton can behave just like a
finite-state machine, so it can decide any language which is
regular. This model of computation is thus strictly more powerful
than finite state machines.

However, it turns out there are languages that cannot be decided
by push-down automaton either. The result is similar to that for
regular expressions, and won't be detailed here. There exists a
Pumping lemma for context-free languages. An example of such a

language is the set of prime numbers.
Power of Turing machines

Turing machines can decide any context-free language, in addition
to languages not decidable by a push-down automaton, such as the
language consisting of prime numbers. It is therefore a strictly
more powerful model of computation.

Because Turing machines have the ability to "back up"in their
input tape, it is possible for a Turing machine to run for a long time
in a way that is not possible with the other computation models
previously described. It is possible to construct a Turing machine
that will never finish running (halt) on some inputs. We say that a
Turing machine can decide a language ifit eventually will halt on
all inputs and give an answer. A language that can be so decided is
called arecursive language. We can further describe Turing
machines that will eventually halt and give an answer for any input
in a language, but which may run forever for input strings which
are not in the language. Such Turing machines could tell us that a
given string is in the language, but we may never be sure based on
its behavior that a given string is not in a language, since it may

run forever in such a case. A language which is accepted by such a

Turing machine is called a recursively enumerable language.

The Turing machine, it turns out, is an exceedingly powerful model
of automata. Attempts to amend the definition of a Turing machine
to produce a more powerful machine are surprisingly met with
failure. For example, adding an extra tape to the Turing machine,
giving it a 2-dimensional (or 3 or any-dimensional) infinite surface
to work with can all be simulated by a Turing machine with the
basic 1-dimensional tape. These models are thus not more
powerful. In fact, a consequence of the Church-Turing thesis is that
there is no reasonable model of computation which can decide
languages that cannot be decided by a Turing machine.

The question to ask then is: do there exist languages which are
recursively enumerable, but not recursive? And, furthermore, are
there languages which are not even recursively enumerable?

The halting problem

Main article: Halting problem

The halting problem is one of the most famous problems in
computer science, because it has profound implications on the
theory of computability and on how we use computers in
everyday practice. The problem can be phrased:

Given a description of a Turing machine and its initial
input, determine whether the program, when executed on
this input, ever halts (completes). The alternative is that it
runs forever without halting.

Here we are asking not a simple question about a prime number or
a palindrome, but we are instead turning the tables and asking a
Turing machine to answer a question about another Turing
machine. It can be shown (See main article: Halting problem) that
it is not possible to construct a Turing machine that can answer
this question in all cases.

That is, the only general way to know for sure if a given program
will halt on a particular input in all cases is simply to run it and see
if it halts. If it does halt, then you know it halts. Ifit doesn't halt,
however, you may never know if it will eventually halt. The
language consisting of all Turing machine descriptions paired with
all possible input streams on which those Turing machines will
eventually halt, is not recursive. The halting problem is therefore
called non-computable or undecidable.

An extension of the halting problem is called Rice's Theorem,
which states that it is undecidable (in general) whether a given
language possesses any specific nontrivial property.

Beyond recursive languages

The halting problem is easy to solve, however, if we allow that the
Turing machine that decides it may run forever when given input

which is a representation of a Turing machine that does not itself

halt. The halting language is therefore recursively enumerable. It
is possible to construct languages which are not even recursively

enumerable, however.

A simple example of such a language is the complement of the
halting language; that is the language consisting of all Turing
machines paired with input strings where the Turing machines do
not halt on their input. To see that this language is not recursively
enumerable, imagine that we construct a Turing machine M which
is able to give a definite answer for all such Turing machines, but
that it may run forever on any Turing machine that does
eventually halt. We can then construct another Turing machine M’
that simulates the operation of this machine, along with simulating
directly the execution of the machine given in the input as well, by
interleaving the execution of the two programs. Since the direct
simulation will eventually halt if the program it is simulating halts,
and since by assumption the simulation of M will eventually halt if
the input program would never halt, we know that M' will
eventually have one ofits parallel versions halt. M'is thus a
decider for the halting problem. We have previously shown,
however, that the halting problem is undecidable. We have a
contradiction, and we have thus shown that our assumption that M
exists is incorrect. The complement of the halting language is
therefore not recursively enumerable.

POSTED BY SOTONK AT 5:43 PM
LABELS: COMPUTER

0 COMMENTS:

Post a Comment

Newer Post Home Older Post

Subscribe to: Post Comments (Atom)

