Laboratoryl:BasicSignalsandSystems

Projectl.1:BasicDiscrete- TimeSignals

Forthisproject,youwillwrite MaTLAB functionstocreatesomebasicsequences,andusethese
functionstoobtainplotsofvariousdiscrete-timesignals. Asanexample,supposeyouareaskedto
writea MATLAB functionthatcreatesthe —wnit-samplesequence (alsoreferredtoasthe  discrete-time

impulse):
0 n#0
oln] = { 1 ni 0

A MATLAB functiontocreatethissequenceis:

begin MATLAB m-file

functiond=Usamp(n)

AUsamp(n) :Functiontocreatesamplesoftheunitdeltafunction
hevaluatedattheelementsofthevectorn.
d=(n==0);%d(n)=1ifn=0,d(n)=0otherwise

end MATLAB m-file

Thefollowing MATLAB commandswouldevaluateandplotthediscrete-timesequence d[n —5lover
theinterval —10 < n < 10:

>>n=-10:1:10;%createthesequenceindices
>>stem(n,Usamp(n-5)) ;%plotthefunction
>>axis([-101002.0])%adjusttheaxes
>>xlabel(’n’);%labelthex-axis
>>ylabel(’amplitude’) ;% labelthey-axis
>>title(’Time-delayeddeltafunction’);)provideatitle

Time-delayed delta function
2 T T T T T

181 J

14r q

12r q

amplitude
=
|

04r 1

0.2f J

B
B
B
B
B
B
B
B
B




Erercisel.1.1: TheUnitSampleSequence

Obtainplots(usingyour Usamp andthe stem function)ofthefollowingsequencesovertheintervals
indicated.

1. z[n]=156n+3] =5 <n<5

2. z[n] =2.56[n+20}F 0.56[n —10], —30 <n <30

Frercisel.1.2: TheUnitStepSequence

Writea MATLAB functiontogeneratetheunit-stepsequence:

u[n]:{ Inm >0

On< 0
Acalltothisfunctionshouldbeoftheform:
>>u=Ustep(n);

where n isavectorofindicesoverwhichthefunctionistobeevaluated.Usethisfunctiontoobtain
plots(usingthe stem function)ofthefollowingsequencesovertheintervalsindicated.

1. z[n] = 3.5u[n—3], —10 <n <10

2. z[n]=un+4]-un-4], -20<n<20

FEzercisel.1.3: TheDiscrete- TimeRectFunction

Writea MATLAB functionthatwillgeneratethefollowingdiscrete-timerectangularpulse:

1, = N<n<N
recty[n] = 0. |n|> N

Acalltothisfunctionshouldbeoftheform:
>>r=Rect(n,N);

wherenisavectorofindicesoverwhichthefunctionist oibdeknesilswidtle Usea n d
thisfunctiontoobtainplots(usingthe stem function )ofthefollowingsequencesovertheintervals
indicated.

1. z[n]=brect 4[n—3], —10<n <10

2. z[n]=rect 19[n] —rects[n], —20 <n <20
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FPrercisel.1.4:TheDiscrete- TimeSinusoid
Writea MATLAB functionthatwillgeneratethefollowingdiscrete-timesequence:
z[n]=sin( wn + ¢).
A MaTLAB calltothisfunctionshouldbeoftheform:
>>x=Dtsin(n,omega,phi);

wherenisavectorofindicesoverwhichthefunctionomdgaantlpthie e valu at
specifytheradianfrequencyandphase,respectively,ofthesinusoid. Usethisfunctiontoobtain
plots(usingthe stem function)ofthefollowingsequencesovertheintervalsindicated:

L. z[n] =sinfgn), 0<n <60
2. z[n] =5singgn + §), —10 <n <30
3. z[n]=cos(2 F;Wn)7 0<n<30

Determinewhetherornoteachsequenceisperiodicand,ifso,determineitsperiod.Doyourplots
agreewiththis?

Erercisel.1.5: TheDiscrete-TimeComplexFExponential
Writea MATLAB functionthatwillgeneratethefollowingdiscrete-timesequence.
wln] = /9",
A MaTLAB calltothisfunctionshouldbeoftheform:
>>w=Cexp(n,omega) ;

where n isavectorofindicesoverwhichthesequenceshouldbeevaluatedand omega istheradian
frequency.Usethisfunctiontocreatethecomplex-valuedsequence

win] = 3.2¢/57=5) ) _10 < n < 20.

1.Usingthe MATLAB commands real and imag.obtainplotsoftherealandimaginarypartof
thissequence.Use subplot toobtainbothplotsinthesamefigure.

2.Usingthe MATLAB commands abs and angle,obtainplotsofthemagnitudeandphaseof
thissequence.Use subplot toobtainbothplotsinthesamefigure.

3.Forbothcases,deriveanalyticexpressionsforthesequencesyouhaveplottedandcompare
theseexpressionswithyourplots.
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Projectl.2:Discrete-TimeSystems

Forthisprojectyouwillwrite MaTLAB functionstoemulatesomebasicdiscrete-timesystems,
andyouwillusethesefunctionstotransforminputsequencestooutputsequences.Asanexample,
supposeyouareaskedtowritea MaTLAB functionthatemulatesthe idealdelaysystem :

y[n] = x[n — ng).

A MaTrLaB functionforthissystemmightbe

begin MATLAB m-file

functionl[y,ny]=Delay(x,nx,n0)
#Delay(x,nx,n0):functiontoemulatetheidealdelaysystem
hforadelayofnO
h
N=max(size(nx)) ;% determinethesizeofnx
ifn0>=0%checkforpositivedelay
ny=[nx(1:N-1)nx(N) :nx(N)+n0] ; jaugmenttheindecesvectorforpos.delay
elseifn0<0
ny=[nx(1)+n0:nx(1)nx(2:N)];%augmenttheindecesvectorforneg.delay
end;
M=max(size(ny));’determinethesizeofny
y=zeros(size(ny));%undefinedvaluesofxwillbesettoO
ifn0>0
y(nO+1:M)=x;
else
y(1:M+n0)=x;
end

end MATLAB m-file

Theparameterspassedtothefunctionaretheinputsequence x,theindicesoverwhichitisdefined
nx,andthenumberofsamplesbywhichitistobedelayed n0.Thefunctionreturnsthedelayed

sequence y withanyvaluesforwhichtheinputsequenceisundefinedsettozero,alongwiththe

indicesoverwhichitisdefined ny. Wecanthenusethisfunction(andfunctionsw:
1.1)toobtainplotsofaninputsequence

. (T
z[n]=5rect 1o[n] mn(En) , —30 < n <30,

delayedbybsamples:

>>nx=-30:30;

>>x=5*Rect(nx,10) .*Dtsin(nx,pi/12,0);
>>[y,ny]=Delay(x,nx,5);
>>subplot(2,1,1);

>>stem(nx,x);
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>>xlabel(’n’);

>>ylabel(’amplitude’);
>>title(’Discrete-timesinusoid’);

>>subplot(2,1,2);

>>stem(ny,y);
>>axis([-3030-55]);%settheaxisthesameforbothplots
>>xlabel(’n’);

>>ylabel(’amplitude’);
>>title(’Discrete-timesinusoid,delayedbybsamples’) ;
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FErercisel.2.1: First-orderMovingAverageSystem
Writea MATLAB functiontoemulatethe  first-ordermovingaveragesystem
y[n] = apz[n] + ayx[n — 1].
Acalltothisfunctionshouldbeoftheform
>>[y,ny]=Mavel(x,nx,a0,al);

where nx isthevectorofindicesforwhichtheinputsequence x isdefined,and ny isthevectorof
indicesforwhichtheoutputsequence y isdefined.Assumethatanyundefinedvaluesof X arezero.
Usethisfunction(andfunctionswritteninProject1.1)toobtainplotsofaninputsequence
/T
z[n]=5rect go[n]sin ") —30 < n < 30,

anditscorrespondingoutputsequencefor:
1. g =land a1 = -1

2. a0:a1:1/2
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Laboratory2:Discrete-TimeConvolution

Inthislaboratoryassignment,youwillstudytheconceptsofdiscrete-timeconvolution.Recall

thatthediscrete-timeconvolutionofthesequences z[n] a n d[n]isdefinedas
y[n] = 2: zk]hin — k], —oco < n < 0.
k=—o0

Ifthesequencesarenonzeroonlyoverfiniteintervals,thatis
(k] = 0,k<K 1 or k> Ky,

and
hin] =0n<N 1 or n> Ny,

thentheconvolutionsumcanbewrittenas

Ky
y[n] = Z zlklh[n — kE].N 1+ K1 <n < Ny+ Ko,
k=K,
andthesequence y[n]willbenonzeroonlyoveranintervalof Ny — Ny + Ky — Ky +1samples.

The MATLAB function conv canbeusedtoconvolvetwosequences;however,youmustdoall
ofthebookkeepingfortheindicesoverwhich z[n], h[n],and y[n]aredefined.Tolearnmore
aboutthe conv function.explorethe conv sub-categorywithinthe datafun categoryoftheon-line
documentation(usingthe doc command).

Writea MATLAB functiontoconvolvetwosequences(usingthe conv function)andkeeptrack
oftheindicesoverwhichthefunctionsaredefined.Acalltoyourfunctionshouldbeoftheform

>>[y,ny]=Convolve(x,nx,h,nh);

where x and h arethesequencestobeconvolved, nx and nh aretheindicesoverwhichtheyare
defined, y istheconvolvedsequence,and  ny isavectorofindicesoverwhichitisdefined.

Examplel Supposeyouareaskedtoconvolvethesequences

z[n] =

<n<
{" Osm<5  jg<n<io,

Ootherwise

and
hin] = (Q7)"u[n], 0<n <20.

Your Convolve couldbeusedwithfunctionsfrompreviouslabsasfollows:

>>nx=-10:10;%maketheindicesforx
>>x=nx.*(Ustep(nx)-Ustep(nx-6));%makex
>>nh=0:20;%maketheindicesforh
>>h=(0.7) . " nh.*Ustep(nh) ;imakeh
>>[y,ny]=Convolve(x,nx,h,nh);convolve
>>stem(ny,y) ;%plot

>>xlabel(’n’);

>>ylabel(’amplitude’);
>>title(’ConvolvedsequenceforExamplel’);
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Convolved sequence for Example 1
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Ezercise2.1.1:
Useyour Convolve functiontoconvolvethefollowingsequences:
z[n] = u[n] —uln — 6], —10 <n <10,

and
hin] = ( 04)"u[n], 0<n <10.

Use stem toplot z[n], h[n],andtheresult.Deriveananalyticexpressionfortheresultandcompare
thiswithyournumericalresult.

Frercise2.1.2:

Useyour Convolve functiontoconvolvethefollowingsequences:

o b o )
rnj= sin(mn
s g
1

= Zsinc(n/él), —100 < n < 100, (2)

and
hin] = z[n], —100 < n < 100.

(Youwillprobablywanttousethe MATLAB function sinc tocreate z[n].)Plot z[n]andthe
convolvedsequence,callit y[n],overtheinterval ~ —100 < n < 100.Usethe axis commandto
ensurethatthelimitsonthex-axisarethesamefortheplotsofboth z[n] a n ¢[n].Doyoufind
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theresultsurprising? Commentonthis.

Erercise2.1.3: First-order MovingAverageSystem
InLaboratoryl,youconsideredasystemwiththefollowinginput-outputrelationship:
y[n] = apz[n] + ayx[n — 1].

Derivetheimpulseresponseforthissystem.Considertheinput
A
z[n]=5rect 0[n] mn(En) , —30 < n <30,

anduseyour Convolve functiontocomputetheoutputsequencefor:
1. g =land a1 = -1
2. Qg = a1 = 1/2

Comparetheseresultswiththoseobtainedusingthe Mavel functionyouwroteforLaboratoryl.

Frercise2.1.4:CascadeConnectionofL TISystems
ConsidertwoL TIsystemswiththeimpulseresponses:
haln] = (08)"u[n],

and

ha[n] = 8[n] — 0.88[n — 1].
1.Useyour Convolve functiontocomputetheoutputofsystemlwhenitsinputis
z[n]=rect 5(n).

Whencreatingtheinputandimpulse-responsesequences,useyourjudgmentastotheap-
propriateindicesoverwhichthesequencesshouldbedefined.(Thatis,youneedtodefine
and nh).

2.Useyour Convolve functiontocomputetheoutputofsystem2whenitsinputistheoutput
ofsystem 1withtheinputdescribedabove.

3.Useyour Convolve functiontocomputetheoverallimpulseresponseforthecascadeconnec-
tionofsystemsland2.Isthisresultconsistentwithyourpreviousresults?Commenton
thisresult,andontherelationshipbetweensystemsland?2.
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Laboratory 3: The Continnous-Time Fourier Transform
Introdustion The purpose of this exercise is to illustrate numerically the concept of the
Fourier transtorm of continuous-time aperiodic signalz. In addition. this exercisze severs
to illustrate the computational questions arizing in the numerical calculation of Tourier
transforms.

Let f(i) bee a real-valued function defined tor —ee < ¢ < oc, satistying conditions of
existence of Tourier transform [ such as absolute integrability. a finite number of maxima,
minima and discountinuities o any finite interval), We recall that

o '
) = / Flihe 14t
—
iz the definition of direct Tourier transform of f{1) where —oc < 1 < ¢,

We will nowe try to compute numerically ' ) far & few examplea of f(¢).
Tor real-valued even function f(1), the tormulla tor FYis) takes the form

) = /: fit)cos(iot)dt (1)

In order tor I'{is) to exist, f{1) must decay to 0 as ¢ — oc or ¥ — —o¢. Therefore, the
computation of I(ts) can be approximated by

13
) = Fltleos(it)d (2)
—
where a ig large enough zo that the contribution of the neglected parts of the integral. ie.
) —
/ FlDeosfit)dt  and / Fltleos(ot)dt
&€ —as
iz amall compazed to the principal part given by formula (2].

Thiz will, for instance, be the case of funetions which are zewo tor [f] > 2, such as a
pulse, or a finite sequence of pulzes.

Fxample Consider a standard unit pulse of width 26, centered at (. The I'outieT trans-
form of the pullse function is

I{is) j M Py(t)e—iutdt

—0

= fﬂ emdut g
a



Fy(t)

TFigure 1: T'ulze function

Now, suppose we do not know the analytical form of i) and we want to compute a
numerical approximation to I{w)

Ffw) = j_ Zl’a[t}e_j‘“*dt
= /m Puft)eos(iat)dt
5
= / bPa (teos(cat)dt (3)

where we choose b such that P (1) = 0, t > b. Hence, b > a. Numerical computation of
eq. [3) can be done, for each fixed ts, by one of the numerical integration routines, The
gimplest one, but not very accurate, iz the Fuler formula.

We divide the interval [—b, b] into J¥ subintervals of length i = 2b/¥. Then

h N1
/ Py(t)eos(iwt)dt = h Y Pul—b+ nh)eos[(—b+ nh)]
-4 =l
Leta=1, =5 N = bl Ther b = {.02.
We now compute this result using Matlab. Let us take a discrete sequence of values of
w, for example, —10 < w £ 10 with a mesh (.2 rad /sec.

Matlab seript

“%computation of Tourier transform of a pulse
a=input(’pulse width a = '}

A-input(’pulse amplitude & = );
h=input(’stepsize h = *};

aT=1.2%a;

T=-aT:h:aT;

om=-2:0.2:2);

% defining the pulse function

pa—zeros(l length(T}):



for k=1:length{T)
t=(k-1)*h+T(1}):
it aba(t) <= a
pafk)=A;

enid
enid

% defining an auxiliary string of ones
uv=ones(length(pa),1});

%rapid computation of the sum

for j=1:length{om)

omt=om(j};
I't(j})=(pa.*cos{omt *T )} *uv*h;

end

plot{om.I't)
title(’ Tourier transform of a pulse’)
xlabel (Trequency in rad per sec’)

Prohlems:

1.

Retype the Matlab script above and test run it with various values of pulse width and
amplitude. Compare the resultz with the exact values of the Tourier transtform given
by the analytic formmula, and plot the error between the exact values and the numerical
approximation. For the lab report, include only two such plots, accompanied by your
summary observations on how well the numerical approximation reproduces the true
Tourier Transtform.

. Modity the Matlab script to enable you to compute a Tourier Transform of any time

function defined by a separate Matlab statement. Tor example, you can define the
pulse function outzside of the program, and then call the program computing the
Fourier Transtorm. Since the program provided above works only for evern tunctions
of time, you will have to add the imaginary part compornent [an integral invelving
t stnftst)), or replace cos by exp. You then need to add a computation of the modulus
and phase (argument) of the complex Tourier Transtorm.

Compute the Fourier Transform of a unit pulse modulated by a function eos{ixgt)
and, in a separate caleulation, by sinfwgt), with wy = 2, 5, 10. Compare the result
with an approprate analytical result,

Compute the Tourier Transtform of a sum of three different pulses of width 1, ampli-
tudes 2, 1 and -2, and centered at —e, 0, ¢ respectively, with the following values of
e 2, 4, §. Compare the results with analytical results obtained by superposition.

In your report, put the above plotz in a sub-plot format {use "help subplot™ to figure out
what to do), and print no more than three pages of the lab report. Add cdear handwritten
explanations of your obzervations.



Laboratory 4: The Discrete-Time Fourier Transform
In this laboratory assignment, you will investigate some of the basic properties of the discrete-time
Fourier transform (DTFT). Recall that the DTFT analysis and synthesis equations are

o0

X(e/) = Z z[n]eI¥n

n=—0oo

z[n] ! /7T X (/)" duw

:g_ﬂ_

respectively, in terms of radian frequency w, or

1
2[n] = / L X(F)ei g E
2
respectively, in terms of digital frequency F. The DTFT analysis equation is a periodic function of
w with period 27, or of F’ with period 1. Typically, the fundamental period is chosen to be [—7, )
for radian frequencies and [—1/2,1/2) for digital frequencies.
When using MATLAB to compute the DTFT, we must deal with two issues:

1. Because signals are represented in MATLAB by finite-length vectors, the analysis equations
can only be computed for signals that are of finite duration. (An exception will occur when
we can derive an analytic expression for a signal’s DTFT and simply evaluate it directly.)

2. Whereas the DTFT is a function of a continuous variable, w or F, it can only be evaluated
with MATLAB on a finite grid of points. Therefore, care must be taken to select enough
frequencies so that our plots give a smooth approximation to the actual DTFT.

Project 4.1: Computing the DTFT for Finite-Length Signals

Suppose a signal is known to be zero everywhere outside of the interval Ny < n < N,. In this
case, the DTFT is evaluated as

X(ev) = Z x[nle™ "
n:N1
in radian frequency, or
No
X(F) = Z z[n]e 27
n:N1

in digital frequency. If we wish to evaluate this summation for M evenly spaced frequencies over
the interval [—7,7) or [-1/2,1/2), we must evaluate the following set of equations:

No

X (ej(_”"'mA“’)) = Z x[n]e‘j(_”"'mA“’)”, m=0,1,---,M -1
n=Nq
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or
No

X (_% + mAF) = Z x[n]e_ﬂr(_%-l—mAF)nv m=0,1,---,M -1
n:N1
where A, = 27/M and Ap = 1/M. A good rule of thumb for obtaining a smooth plot of the
DTFT is to select M to be 5 to 10 time larger than the signal duration N = Ny — Ny + 1.

The Discrete Fourier Transform (DFT) Suppose we wish to compute M evenly-spaced frequency
samples over the interval [0,27) or [0,1) of a sequence that is known to be zero outside of the
interval 0 < n < M — 1. The equations for computing these samples in digital frequency are

X[m] = X(mAp)

M-1
— Z $[m]€_j27TAan

where Ap = 1/M. Whereas direct evaluation of these equations requires on the order of M?
floating-point operations (FLOPS), a computationally-efficient algorithm, known as the Fast Fourier
Transform (FFT), exists for computing these equations with only the order of M log, M FLOPS.
In maTLAB, the FFT is evaluated by the function £ft.

Example 1 Consider the sequence

o {1 0sn<o
Y=Y 0 otherwise

The following MATLAB commands would compute 100 evenly spaced samples of the DTFT (from 0
to 1 in digital frequency) of this sequence:

>> x = ones(1, 11);

>> X = fft(x, 100); % x is augmented with enough zeros to make its length 100
>> m = 0:99;

>> F = m/100;

>> subplot(2,1,1);

>> title(’Spectrum for Example 1°);
>> plot(F, abs(X));

>> xlabel(’digital frequency’);

>> ylabel(’magnitude spectrum’);

>> subplot(2,1,2);

>> plot(F, angle(X));

>> xlabel(’digital frequency’);

>> ylabel(’phase spectrum’);
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Spectrum for Example 1
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Do you understand why the phase jumps by © everywhere the magnitude spectrum is zero?

To learn more about the £ft function, explore the £ft sub-category within the datafun category
of the online help (accessed with the doc command).

Suppose we wish to compute M samples of the DTFT over the digital frequency interval
[—1/2,1/2) for a sequence that is known to be zero outside of the interval Ny < n < Nj. In
this case, we can still use the FFT by observing that

N»

X(-3+mAp) = 3 a[n)emi?(-5tmar)n
n=Nq
= Z z[n]e! eI M
n=Nq
Ny—Ny
= Z x[n—l—Nl]ej”(”"'Nl)e_ﬂﬁﬁm(”"'Nl)
n=0

No—N;
= (—l)Nle_]%Nlm Z x[n—l—Nl](—l)”e_]%m”
n=0

M-1
= (~1)MendFENT N Gplemd S
n=0
= (=DM FN K m),
where /7 = —1,

i[n]— $[7”L—|—N1](—1)n OSTLSNQ—Nl
o 0 NQ—N1—|-1§TL§M—17

and X[m] is the FFT of #[n]. Based on this analysis, the following MATLAB function will evaluate
M equally spaced samples over the digital frequency interval [—1/2,1/2) of the DTFT of a finite-
length sequence:
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begin MATLAB m-file

function [X, F] = DTFT(x, N1, M)
ADTFT: Compute the DTFT of a finite-length sequence at M equally

h spaced digital frequencies
% inputs
—
A & the N-length input sequence
h o Ni: the starting location for the sequence x
Lo M the number of frequencies for evaluation over the interval
A of digital frequencies [-1/2, 1/2)
A (M must be greater than or equal to N)
% outputs
/A ———
ho X the DTFT values
s F: the frequencies for which the DTFT values are evaluated
[/
M= fix(M);
N = length(x);
x = x(:); % make x a column vector
if (M <)
error (’DTFT: # frequency samples must be greater than # data samples’);
end
n=20:N-1; n =n(:); % make n a column vector
m=0:M-1; m = m(:); % make m a column vector
F=-0.5+ m/M;

tilde_x = zeros(M,1);

tilde_x(1:N) = x .*x (-1)."n;

tilde_X = fft(tilde_x, M);

X = (-1)"N1 * exp(-j*2*pixN1*m/M) .* tilde_X;

end MATLAB m-file

Digital frequencies can, of course, be converted to radian frequencies according to

w=2rF.

Erercise 4.1.1: DTFT of a Rectangular Pulse
Consider the rectangular pulse of duration L samples:

SN EYES A
=Y 0 otherwise

1. Show that the DTFT of z[n] is
—iw(L-1)/2 sin(wl/2) w £ k2

X(ej‘”) = sin(w/2) T ,
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for any integer k, or, in terms of digital frequency,

_jxF(L-1) sin(xr F'L)
X(F):{ej sin(7£") Fk
L =k

The term sin(7 F'L)/ sin(7 F') occurs often in discrete-time signal processing and is referred to
as the aliased sinc function or the Dirichlet function:

. sip!ﬂFL! F4k
asinc(F, L) = sin(m F") ,
L F=k

for any integer k. Can you show that the asinc function can be equivalently defined as

sinc(F'L),

asinc(F, L) = Lm !

Write a MaTLAB function Asinc(F,L) to evaluate the aliased sinc function. A call to this
function should be of the form

>> X = Asinc(F,L);

where F is a vector of digital frequencies over which the function should be evaluated and
L is the duration parameter. The length of the returned sequence X should be the same as
that of F. Use this function to obtain a plot of the magnitude and phase of the DTFT of z[n]
for I = 10. Experiment with different numbers of frequency samples. Plot your final results
both as a function digital and of radian frequency.

2. Use the DTFT function to evaluate the DTFT of z[n] for I = 10. Obtain plots of the magnitude
and phase spectrum for this signal. Experiment with different numbers of frequency samples,
and compare your results with those obtained by directly evaluating the analytic expression
with your Asinc function.

3. Using your DTFT function, obtain plots of the magnitude and phase spectra for I = 4,8,9,
and 15. By inspecting these plots, can you determine a general rule for the regular spacing
of zeros in the magnitude spectrum? How about the location and value of the peak of the
magnitude spectrum? How about the location and value of the first side-lobe in the magnitude
spectrum?

Erercise 4.1.2:  The Shifting Property

Consider the discrete-time sequence

x[n]:{z—w [n| <2

0 otherwise

1. Use your DTFT function to obtain plots of the magnitude and phase spectrum for z[n].

2. Use your DTFT function to obtain plots of the magnitude and phase spectrum for z[n — 1].
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3. Use your DTFT function to obtain plots of the magnitude and phase spectrum for z[n — 2].

4. Comment on the similarities and differences between the spectra for these three signals. Using
the theory of discrete-time signal processing, explain your observations.

FErercise 4.1.83:  The Convolution Theorem
Consider the following discrete-time sequences:
z[n] = rects(n — 2),
and

h[n] = 4—|n—4] 0<n<8
10 otherwise

1. Use your DTFT function to compute and plot the magnitude and phase for X (/%) and H(e/*).

2. Use your Convolve routine to compute and plot

3. Use your DTFT function to compute and plot the magnitude and phase for Y(ej‘”).

4. Compute and plot the magnitude and phase for the product X (e/*)H(e/*). How do these
plots compare with your plots of the magnitude and phase for Y (e’“)? Explain this.

Erercise 4.1.4: The Modulation Theorem
Consider the discrete-time sequence
z[n] = rectigo(n).
1. Use your DTFT function to compute and plot the real-part of X (F).
2. Consider the signal
T
y[n] = x[n] cos (Zn) .
Use your DTFT function to compute and plot the real-part of Y (I).
3. Consider the signal
5T
z[n] = x[n]cos [ —n | .
4
Use your DTFT function to compute and plot the real-part of Z(}").
4. Compare these spectra and comment on their similarities and differences.

5. In all cases, what is the imaginary-part of the sequence’s DTFT? Why?
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Laboratory 5: Sampling of Continuous-Time Signals
In this laboratory assignment, you will investigate some of the basic principles of the sampling
process.

Project 5.1:  Sampling a Sinusoid

Consider the continuous-time sinusoidal signal
z(t) = cos(27 fot),

with frequency fy in Hz. If we sample this signal at the rate f; = 1/7, we will obtain the discrete-
time signal

z[n] = a(nTy)
= cos(2m foTsn)

= cos 27r@n .
L)

For each part of this project, use a sampling frequency of f; = 8192 Hz. Also, use frequency-domain
sketches in your explanations.

1. For fo = 128,256,384, and 512 Hz, sample each signal over an interval of about 16 ms, and
plot the resulting signal. Use the subplot command to put your plots in the same figure.
Does the frequency of the discrete-time signal appear to be increasing? Explain.

2. For fo = 7680, 7808,7936, and 8064 Hz, sample the signal over an interval of about 16 ms,
and plot the resulting signal. Use the subplot command to put your plots in the same figure.
Does the frequency of the discrete-time signal appear to be increasing? Explain.

3. For the frequencies specified in part (1), sample each signal over an interval of about 0.25 s.
Make a new signal by concatenating the four sampled signals together. This new signal will
contain the four 0.25 s segments. Using a machine with a speaker and a D/A converter!, use
the MATLAB sound command to listen to this signal. Can you hear four distinct tones? Are
they increasing in frequency?

4. For the frequencies specified in part (2), sample each signal over an interval of about 0.25 s.
Make a new signal by concatenating the four sampled signals together. Again, use the sound
command to listen to this signal. Can you hear four distinct tones? Are they increasing in
frequency? Explain.

5. For fo = 3840,3968,4096, 4224, and 4352 Hz, sample each signal over an interval of about
0.25 s. Make a new signal by concatenating the five sampled signals together. This new signal
will contain the five 0.25 s segments. Again, use the sound command to listen to this signal.
Can you hear five distinct tones? Are they increasing in frequency? Explain.

LAl terminals in the Maxwell lab except maxwelll (b & c) and maxwell2 (b & c¢) have this capability.
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Project 5.2:  Sampling a Chirp

A continuous-time, linear frequency-modulated (LFM) chirp is a sinusoidal signal whose frequency
changes linearly with time:
x(t) = cos(mat?).
This waveform is of particular importance in radar and sonar applications. As an example, a plot
of the LF'M signal
2(t) = cos(w100t?)

over the time interval [0,0.5] seconds is shown below:

Linear FM Chirp
1 T T

081

061

041

0.2

amplitude
o

Il Il Il Il Il
0 005 01 015 02 025 03 035 04 045 05
t (seconds)

The instantaneous frequency of this signal is found by taking the time derivative of the phase:

0
oy = 20
Imat?
ot

= 2mat,

from which we see that the instantaneous frequency of the signal is at Hz and exhibits a linear
variation in time. For each part of this project, use a sampling frequency of f; = 8192 Hz.

1. Let a@ = 2048. Sketch the instantaneous frequency of this signal as a function of time over
the interval [0, 2] seconds, clearly showing the starting and ending values. Sample the signal
over an interval of 2 seconds, and use the sound command to listen to this signal. Does the
frequency appear to be increasing linearly with time?

2. Let a = 8192. Sketch the instantaneous frequency of this signal as a function of time over
the interval [0, 2] seconds, clearly showing the starting and ending values. Sample the signal
over an interval of 2 seconds, and use the sound command to listen to this signal. Does
the frequency appear to be increasing linearly with time? If not, use your sketch of the
instantaneous frequency and its relationship to the sampling frequency to explain the sound
that you hear.
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Project 5.3:  Sampling Multiple Sinusoids
Consider the continuous-time signal
x(t) = cos(27 fot) — cos(27 f1t),
with fp and fy in Hz. For each part of this project, use fo = 100 Hz and f; = 200 Hz.

1. Let the sampling frequency be f; = 400 Hz, and sample the signal over the time interval
[0,0.1] seconds. Plot the discrete-time sequence using the stem command.

2. Let the sampling frequency be f; = 1600 Hz, and sample the signal over the time interval
[0,0.1] seconds. Plot the discrete-time sequence using the stem command.

3. Let the sampling frequency be f; = 300 Hz, and sample the signal over the time interval
[0,0.1] seconds. Use a frequency-domain sketch to predict what the sampled signal should
look like. Plot the discrete-time sequence and compare the plot with your prediction. (Be
sure to notice the scale of the amplitude axis.)

Use the subplot command to put all of the plots on the same figure.

Project 5.4: Reconstruction From Samples
The Nyquist sampling theorem states that if z.(¢) is a bandlimited signal with
X.(j2)=0 for |Q] > Qn,
or, equivalently,

X.(f)=0 for |f|> fn,

then 2.(t) is uniquely determined by its samples z[n] = z.(nT), for n = 0,+1,42,..., provided

that the sampling period satisfies
T 1

T<—=—
Oy 2fn

or, equivalently, the sampling frequency satisfies

fs > 2fN7

or
Q. > 2QpN.

In this project, you will investigate the importance of using the proper form of interpolation when
attempting to reconstruct a signal from its samples.
Consider the Gaussian pulse signal:

x(t) = e

The Fourier transform of this signal is



X(f) = ﬁe—(ﬂf/a)?

a
For the following exercises, let @ = 100.

1. Use the MATLAB plot command to plot the magnitude spectrum for the Fourier transform
of this signal over the interval [—150,150] Hz. Verify that the spectrum is approximately
zero for |f| > 75 Hz. Although this signal is not bandlimited (its tails extend to +oc), we
can approximate it as bandlimited. Based on this information, the minimum sample spacing
required to uniquely specify this signal by its samples is approximately

1
T < ﬁseconds.

2. Use the plot command and a sample spacing of 0.0001 s to plot (¢) over the interval
[—1/30,1/30] s. Because the plot command connects each sample with a straight line, the
continuous plot represents a reconstruction of z(t) from its samples through linear interpo-
lation. Notice, however, that the sampling frequency used here is approximately 70 times
larger than is required in the Nyquist theorem.

3. Use the sampling frequency f; = 150 Hz to sample the signal over the time interval [—1/30, 1/30]
seconds. Use the plot command to connect the samples with straight lines. This sampling
frequency satisfies the Nyquist criterion; however, does the signal look like a Gaussian pulse
when reconstructed by linear interpolation?

4. Recall that reconstruction of a signal from its Nyquist samples requires that the signal be
reconstructed with an ideal low-pass filter. In the time domain, this corresponds to a sinc
interpolation filter:

z.(t) = i z[n]sinc (t — nT) .

n=—0oo

(a) Let T'=1/150 seconds, and use the plot command and a sample spacing of 0.0001 s to
plot sinc(¢/T") over the interval [—0.04,0.04] s. The process of sinc interpolation simply
scales and shifts this function according to z[n] and the sample spacing, and then adds
all of the shifted functions.

(b) If

then the command
>> [xr, tr] = SincInterp(x, n, T);

will perform sinc interpolation from the samples stored in the vector x, to create a new
vector xr which contains samples of the original signal sampled at a sampling rate which
is 20 times greater than 1/7". The times at which the new samples are taken are stored
in the vector tr. Type help SincInterp to learn more about this function. For the
Nyquist-sampled signal obtained in Part 3, use this function to plot the reconstructed
signal. Adjust the limits on the x- and y-axes with the axis command so that they
are the same as for your linearly-interpolated plot from Part 3. Compare the two plots.
Comment on the importance of using the appropriate interpolation when samples are
obtained at or near the Nyquist rate.
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Laboratory 6: Spectrum Analysis
Spectrum analysis often refers to the task of processing a continuous-time signal to compute the
signal’s frequency spectrum; either magnitude, phase, or both. In this laboratory assignment you
will investigate and explore some of the basic methods used for the frequency-domain analysis of
signals.

Many modern instruments for spectrum analysis use digital signal processing techniques. An
example of one such instrument is the SR770 FFT Network Analyzer manufactured by Stanford
Research Systems'. The basic components of a digital spectrum analyzer are shown below:

(ensure the signal is bandlimited) (continuous-to-discrete)
s(t) Antll;ﬁllez;\s ng X(t) oD x[n] = x(nT)
Mt
(window) (Fourier transform) VT
(AN DTFT Y(F) Display —= X7
w[n]

The anti-aliasing filter is used to ensure that the input signal is bandlimited to a frequency that is
appropriate for the sampling frequency. As an example, if the sampling frequency for the continuous
to discrete (C/D) converteris f; = 128 kHz, then the anti-aliasing filter should suppress frequencies
greater than 64 kHz. The C/D converter converts the continuous-time (CT) signal to a discrete-
time (DT) signal; the sampling rate is 7" = 1/f;. The window function is needed to truncate
the DT signal to an interval of length N; this then allows for the numerical computation of the
signal’s spectrum using an algorithm such as the one developed in our laboratory on the discrete-
time Fourier transform (DTFT). After the Fourier transform of the windowed signal has been
computed, the final step is the display of the spectrum with the frequency axis appropriately
labeled as specified by the sampling period 7.
Because
yln] = aln]uln],

the modulation or windowing property of the DTFEFT tells us that

Y(e) = %/W X ()W () dp,

—T

in radian frequency, or
1/2
Y(F) = / X(FYW(F - F')dF"
—1/2

in digital frequency, where X and W are the DTFT of z[n] and w[n], respectively. Because of this,
the DTFT of the window function should be a function that is highly concentrated around w = 0
or I' = 0. For instance, if the DTFT of the window function is an impulse train (implying that the
window function is constant and of infinite duration)

W= S 8(F k),

k=—0c0

!This is the spectrum analyzer used in our communications laboratories.
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then Y (F') will simply be X (F'). However, any practical window function must be of finite duration
and some blurring of the spectrum will occur.

Upon displaying the signal’s spectrum, the frequency axis should be adjusted according to the
following conversion rules:

e Digital frequency to Hz: f = F/T

e Digital frequency to Radians/Second: Q = 2nF|T
o Radian frequency to Hz: f = w/(27T)

e Radian frequency to Radians/Second: Q = w/T

Given that our DTFT algorithm (MATLAB function Dtft) produces samples of the spectrum in
digital frequency, and that most spectrum analyzers specify frequency in Hz, we will focus on the
conversion from digital frequency to Hz:

Y(F) = S(F/T),

or

S(f) =Y (UT).

Project 6.1: Rectangular Window

The simplest and most straight-forward of the window functions is the Rectangular window
function:

e [ L OSn<N -1
"] 0 otherwise

The following MATLAB commands will create and plot a rectangular window with N = 10, and
will also compute and plot its magnitude spectrum:

>> n = -10:30;
>> N = 10;
>> w = Ustep(n) - Ustep(n-N);

>> [W,F] = Dtft(w, n(1), 1024);

>> subplot(2,1,1);

>> stem(n,w);

>> xlabel(’n’)

>> ylabel(’amplitude’)

>> title(’Rectangular window (N=10)’)
>> subplot(2,1,2)

>> plot(F, abs(W))

>> xlabel(’digital frequency’)

>> ylabel(’magnitude’)
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It is often convenient to make magnitude spectrum plots on a normalized dB scale, where the peak
of the magnitude spectrum is normalized to 0 dB. The commands

>> dBplot(F, abs(W), -50);
>> xlabel(’digital frequency’);
>> title(’Magnitude spectrum for rectangular window (N=10)’)

will accomplish this with the normalized magnitude axis clipped at —50 dB:

Magnitude spectrum for rectangular window (N=10)
T T T T T T T

50 | | |
-05 -04 -03 -02 -01 0 0.1 0.2 0.3 04 05
digital frequency

Notice that the y-axis is automatically labeled as “dB”. Type help dBplot to learn more about
this command.

The quality of a window function is often specified by the width of the mainlobe and by the
height of the largest sidelobe of its magnitude spectrum. Often these two qualities are specified
by the frequency at which the normalized magnitude of the mainlobe falls to -3dB (called the 3dB
point), and by the height (or attenuation) of the largest sidelobe (usually specified in normalized
dB). For instance, inspection of the previous figure shows that the 10-point rectangular window
has a 3dB width of approximately 0.06 cycles/sample, and the height of its largest sidelobe is
approximately —13 dB.

For the following window lengths: 16, 32, 41, and 64, compute the DTFT (using Dtft) and
plot the magnitude spectrum on a dB scale (using dBplot). Use the subplot command to put the
plots in the same figure.

1. What is the height of the first sidelobe as a function of the window length? Can you determine
an analytic expression for determining this height for arbitrary N7
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2. What is the 3dB width of the mainlobe as a function of the window length? Can you determine
an analytic expression for determining this width for arbitrary N?

Project 6.2:  Other Commonly Used Windows

Some of the most commonly used windows in signal processing and spectrum analysis include the
Rectangular, Bartlett, Hanning, Hamming, and Blackman windows?. Each of these windows can be
generated through MaTLAB function calls and are defined by the following equations:

e boxcar(N) (the rectangular window):

N BN ETES S8
] 0, otherwise

e bartlett(N):

2n N-1
N-T° 0<n< 5
wln] =< 2 — F, ¥<n§]\7—1
0, otherwise
e hanning(N):
_ 2m(n+1) _
wln] = 0.5 0.5(:05( NI ), 0<n<N-1
0, otherwise
¢ hamming(N):
0.54— 046 cos (275 ), 0<n < N -1
[n] = :
0, otherwise
¢ blackman(N):

N-1

wln] = :
0, otherwise

{ 042 — 0.5 cos (2= +0.08 cos (=), 0<n < N -1

1. Using the plot command with multiple arguments, obtain plots of the Rectangular, Bartlett,
Hanning, Hamming, and Blackman windows for N = 100, all on the same axes. Based on
these time-domain plots, does any window seem “best”? Is it the rectangular window?

2. Obtain dB plots of the magnitude spectrum for each of these windows. Use the axis command
or the MATLAB colon operator to display only the frequency interval that contains the first
few sidelobes. Comment on the differences between the mainlobe width and sidelobe height
for each of these windows. Which window has the most narrow mainlobe? Which window
has the lowest sidelobes? Which window do you think would be best for a spectrum analyzer?

Why?

?The Bartlett, Hanning, Hamming, and Blackman windows are all named after their originators. The Hanning
window is associated with Julius von Hann, an Austrian meteorologist, and is sometimes referred to as the Hann
or von Hann window. The term “hanning” was used by Blackman and Tukey (The Measurement of Power Spectra,
1958) to describe the operation of applying this window to a signal. (From Oppenheim and Schafer, Discrete Time
Signal Processing.)
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Project 6.3:  Spectrum Analysis for a Tone

Consider the continuous-time signal
z.(t) = cos(27 fot),

where fo = 30 kHz. Suppose you are using a digital spectrum analyzer with a sampling frequency
fs = 128 kHz. Using a window size of N = 128 samples, compute the DTFT of the sampled signal
after it has been multiplied by the window, and display the magnitude spectrum with the frequency
axis labeled in Hz (you must convert the digital frequencies returned by the Dtft function to Hz).
Using each of the windows (Rectangular, Bartlett, Hanning, Hamming, and Blackman), obtain
plots of the magnitude spectrum for this signal. Be sure to label the frequency axis appropriately.
Use the axis command to “zoom-in” on the frequency interval that contains the mainlobe and
a few sidelobes of the spectrum of this signal. In your judgment, which window gives the best
performance?

Project 6.4: Spectral Resolution for Two Tones

Consider a combination of continuous-time tones at closely spaced frequencies fy and fo + Ay:

zo(t) = cos(27 fot) 4 cos(27[ fo + Af]t),

where fo = 30 kHz and Ay is the frequency offset. Again, suppose your are using a digital spectrum
analyzer with a sampling frequency f; = 128 kHz. Our goal here is to determine the minimum
frequency offset Ay such that our spectrum analyzer can clearly distinguish the two frequency
components of this signal. For this project, focus only on the Rectangular and Hanning windows.
Beginning with Ay = 10 kHz and using a window size of N = 128 samples, compute the DTFT of
the sampled signal after it has been multiplied by the window, and display the magnitude spectrum
with the frequency axis labeled in Hz. Use the axis command to localize the frequency axis to the
region of interest. Can you clearly distinguish the two frequency components with both windows?
Does one window seem to perform better than the other? Can you suggest modifications that
would increase the resolution of your spectrum analyzer?

Now, decrease Ay until you can no longer distinguish two separate frequency components. Do
this for both windows. Does one window have better “resolution” than the other? That is, can one
of the windows distinguish the two tones for a smaller Ay than the other?
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Laboratory 7: FIR Filter Design Using Window Functions
In this laboratory assignment you will investigate and explore a method of FIR filter design known
as the window method. This method generally begins with the specification of a desired frequency
response for an LTI system: Hy(e/*) in radian frequency, or Hy(F) in digital frequency. The
impulse response for this system is then obtained through the Fourier synthesis equation:
1 g7 o
ha[n] = / Hy(e!)e! " dw

21 Jr

1/2 ,
_ / Hy(F)e??m g,
~1/2

However, because the specification of the desired system often includes a piecewise constant or
piecewise functional frequency response, the desired system’s impulse response is often non-causal
and of infinite duration. As an example, suppose the desired system is an ideal low-pass filter with
a cut-off frequency of 7/4 in radian frequency or 1/8 in digital frequency. The desired impulse
response is then

1 /4
hqln] = ﬁ/_ /463‘””dw

6j7rn/4 _ 6—j7rn/4

727N
sin(mn/4)
™

= %sinc(n/él).

Obviously this impulse response is neither causal nor of finite duration. To make the impulse
response finite, we might truncate the sequence:

hiln] = { haln], =M < n < M

0, otherwise

This system, however, would not be causal. To make the system causal and of finite duration, we
could delay the truncated impulse response by M samples:

hin] = hn— M]
{hd[n—M], 0<n<2M

0, otherwise
This two-step process can be viewed as
hin] = hg[n — M]rectps[n — M|,

where rectys[n] is the rectangular window function of width 2M 4 1. In general, any window
function w[n] could be used to truncate the impulse response:

hin] = hg[n — M]w[n — M].
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Much insight can be gained by examining the windowing operation in the frequency domain. Most
times we specify the desired frequency response as a real-valued symmetric function so that the
desired impulse response is also a real-valued symmetric function. Then, because of the time—delay
property for the DTFT:

haln — M| —— Hy(e?*)e 9™

or
hgln — M| — Hd(F)e_ﬂ?TFM,

the frequency response for the delayed system will have generalized linear phase. Furthermore, if
the window function is a real-valued symmetric function, then its Fourier transform (W (e’) or
W(F)) will also be a real-valued symmetric function, and, as with the shifted impulse response,

wln — M] —— W(e?)e oM

or
wln — M) —— W(F)e 2™,

Because multiplication in the time domain results in convolution in the frequency domain, we have

hiln — Mwn — M] — QL/ Hy(e?®)e 1My (i (0=0))=ilw=0M gg

T J—n

= o [ AW e,
T J—n

or
1/2 / .
hgln — Mlwln — M] Hy(F") —J2WP’AJVV( lw)e—qzw(F'—PjAdeT/

~1/2

1/2
- / P YW = F)dE i
—1/2

and the resulting frequency response will also have generalized linear phase. Because the resulting
frequency response is the convolution of the desired frequency response with the Fourier transform
of the window function (times the linear phase term), windows that are highly concentrated in the
frequency domain will result in the best approximation of the desired frequency response.

All of the windows we have previously considered — Rectangular, Bartlett, Hanning, Hamming,
and Blackman — can be used for FIR filter design!. In addition to these, a more flexible and general
window is the Kaiser window:

I (5/1= 0= M)/ = 1)
w(n] = Io(ﬁ) )

0, otherwise

0<n<N-1

b

where M = (N —1)/2, Ip(z) is the zeroth-order modified Bessel function of the first kind, and 3
is a parameter that adjusts the width and shape of the window. The MaTLAB function call for an
N-length Kaiser window with parameter beta is kaiser(N,beta). The utility of this window lies
in its ability to adjust the trade-off between mainlobe width and sidelobe height. These window
characteristics are important because they control the transition bandwidth and passband ripple
when the window method is used for FIR filter design.

1Recall that the MATLAB definition for each of these windows is such that they are already shifted so that they
begin at n = 0.
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Example 1 Suppose we wish to design a length-41 low-pass filter with the cutoff frequency 7 /4
(in radian frequency) or 1/8 (in digital frequency). The following MATLAB code would accomplish
this using the Rectangular, Hanning, and Blackman windows:

>> N = 41; n=0:N-1;

>> hd = (0.25)*sinc((n-20)/4); % the desired impulse response (truncated)
>> wl = boxcar(N); % the rectangular window
>> h1 = hd(:) .* wi(:);

>> [H1,F] = Dtft(hi,n(1),1000);

>> w2 = hanning(N); % the hanning window
>> h2 = hd(:) .* w2(:);

>> [H2,F] = Dtft(h2,n(1),1000);

>> w3 = blackman(N); % the blackman window
>> h3 = hd(:) .* w3(:);

>> [H3,F] = Dtft(h3,n(1),1000);

>> subplot(2,1,1)

>> plot(F,abs(H1),’-’,F,abs(H2),’--’,F,abs(H3),’-.");
>> legend(’-’,’rectangular’,’--’,’hanning’,’-.”,’blackman’) ;
>> xlabel(’digital frequency’);

>> ylabel(’magnitude’);

>> title(’Frequency Response for Example 1°);

>> subplot(2,1,2)

>> plot(F,dB(abs(H1),-100),’-’,F,dB(abs(H2),-100),’--’,F,dB(abs(H3),-100),’-.7);
>> xlabel(’digital frequency’);

>> ylabel(’normalized magnitude (dB)’);

Frequency Response for Example 1
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To learn more about the function dB, type help dB at the MaATLAB prompt. The impulse response
for each of the filters is shown in the following figure:
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Impulse Response for Example 1
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Project 7.1: High-Pass Filter Design

Design a length-61 linear-phase FIR high-pass filter with a band edge of 77 /8 in radian frequency
or 7/16 in digital frequency using the Rectangular, Bartlett, Hanning, Hamming and Blackman
windows. For each window, plot the impulse response and the magnitude of the frequency response
(on a dB scale). Which filter do you feel is “best”?

Project 7.2: Band-Pass Filter Design

Design a length-61 linear-phase FIR band-pass filter with the passband 7/4 through /2 in radian
frequency or 1/8 through 1/4 in digital frequency using the window function that you classified as
“best” in the high-pass filter design. Plot the impulse response and the magnitude response (on a
dB scale). Repeat for a length-23 and a length-401 filter. Comment on your results.

Project 7.3: Kaiser Window

For a frequency selective filter, let § define the maximum percent ripple in the passband (percent
ripple = 100 x ¢), and
Aw = |ws — wpl,

define the width of the transition band, where wy is the stop-band frequency and w, is the pass-band
frequency. Furthermore, let

As determined by Kaiser, empirical formulas for the 5 and N that are needed to achieve specified
values of 6 and Aw are

0.1102(A — 8.7), A > 50
B =12 0.5842(A —21)°* +0.07886(A — 21), 21 < A<L50
0, A<21
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and

. A-38
© 2.285Aw°

1. Write a MATLAB function to evaluate N and § for specified values of § and Aw. A call to

your function should be of the form
>> [N, beta] = KaiserParam(delta, delta_omega);

where delta is the ripple parameter and delta omega is the transition region width. Use
this function to obtain a plot of § versus é to get a feel for the typical range for . For your
plot, vary ¢ from 0.0001 to 0.1. (Hint: write your function so that delta, N and beta can be
vectors.)

. Design a length-61 linear-phase FIR high-pass filter using the same specifications as in Project

7.1, but using a Kaiser window with § = 2,6, and 9. Plot the impulse response and the
magnitude response (in dB). Compare these with each other and with the filters designed
with the other windows. Comment on your results.

. Design a linear-phase FIR high-pass filter using the same specifications as in Project 7.1 and

a Kaiser window, but select N and 3 for 1% ripple in the passband and a transition region
of width 7/10 in radians. Use your function KaiserParam to determine the window width N
and . Plot the impulse response and the magnitude response (in dB). Compare these with
the filters designed with the other windows. Comment on your results.
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